• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Low energy ground cooling system for buildings in hot and humid Malaysia

Sanusi, Aliyah Nur Zafirah January 2012 (has links)
This thesis presents an investigation into the viability of Low Energy Earth Pipe Cooling Technology in providing thermal comfort in Malaysia. The demand for air-conditioning in buildings in Malaysia affects the country escalating energy consumption. Therefore, this investigation was intended to seek for a passive cooling alternative to air-conditioning. By reducing the air-conditioning demand, there would be a higher chance of Malaysia government to achieve their aim in reducing CO2 emissions to 40 per cent by the year 2020, compared to 2005 levels. The passive technology, where the ground was used as a heat sink to produce cooler air, has not been investigated systematically in hot and humid countries. In this work, air and soil temperatures were measured on a test site in Kuala Lumpur. At 1m underground, the result is most significant, where the soil temperature are 6oC and 9oC lower than the maximum ambient temperature during wet and dry season, respectively. Polyethylene pipes were buried around 0.5m, 1.0m and 1.5m underground and temperature drop between inlet and outlet were compared. A significant temperature drop was found in these pipes: up to 6.4oC and 6.9oC depending on the season of the year. The results have shown the potential of Earth Pipe in providing low energy cooling in Malaysia. A parametric study on the same experiment was carried out using Energy Plus programme. Energy Plus data agreed with the field work data and therefore, this confirms Energy Plus is reliable to investigate Earth Pipe Cooling in Malaysia. Furthermore, thermal comfort of air at the Earth Pipe outlet was analyzed and the result has shown that the outlet air is within the envelope of thermal comfort conditions for hot/humid countries
2

Organic Fluids and Passive Cooling in a Supercritical Rankine Cycle for Power Generation from Low Grade Heat Sources

Vidhi, Rachana 08 July 2014 (has links)
Low grade heat sources have a large amount of thermal energy content. Due to low temperature, the conventional power generation technologies result in lower efficiency and hence cannot be used. In order to efficiently generate power, alternate methods need to be used. In this study, a supercritical organic Rankine cycle was used for heat source temperatures varying from 125°C to 200°C. Organic refrigerants with zero ozone depletion potential and their mixtures were selected as working fluid for this study while the cooling water temperature was changed from 10-25°C. Operating pressure of the cycle has been optimized for each fluid at every heat source temperature to obtain the highest thermal efficiency. Energy and exergy efficiencies of the thermodynamic cycle have been obtained as a function of heat source temperature. Efficiency of a thermodynamic cycle depends significantly on the sink temperature. At areas where water cooling is not available and ambient air temperature is high, efficient power generation from low grade heat sources may be a challenge. Use of passive cooling systems coupled with the condenser was studied, so that lower sink temperatures could be obtained. Underground tunnels, buried at a depth of few meters, were used as earth-air-heat-exchanger (EAHE) through which hot ambient air was passed. It was observed that the air temperature could be lowered by 5-10°C in the EAHE. Vertical pipes were used to lower the temperature of water by 5°C by passing it underground. Nocturnal cooling of stored water has been studied that can be used to cool the working fluid in the thermodynamic cycle. It was observed that the water temperature can be lowered by 10-20°C during the night when it is allowed to cool. The amount of water lost was calculated and was found to be approximately 0.1% over 10 days. The different passive cooling systems were studied separately and their effects on the efficiency of the thermodynamic cycle were investigated. They were then combined into a novel condenser design that uses passive cooling technology to cool the working fluid that was selected in the first part of the study. It was observed that the efficiency of the cycle improved by 2-2.5% when passive cooling system was used.
3

Kyllösning för kommersiell fastighet : Undersökning av olika alternativ för komfortkyla

Alsing, Anders January 2023 (has links)
Det här arbetets syfte är att ge förslag på ny kyllösning i en kommersiell fastighet. Den nuvarande lösningen innebär att kylan kommer ifrån tappkallvatten som spolas in i en värmeväxlare, den här lösningen är både dyr och har en negativ påverkan på vår miljö, fastighetsägaren är inte nöjd med detta och vill göra om systemet. Då det inte finns några direkta mätvärden från systemet förutom vattenförbrukningen så är effekt-och energibehovet en osäkerhet. Två driftfall har tagits fram där driftfall 1 och driftfall 2 har ett effektbehov på 80 kW respektive 130 kW. Utifrån driftfallen har effekt- och energiprofil tagits fram. Med hjälp av profilerna har en ny lösning tagits fram men med fyra olika metoder. Undersökningen tar upp lösningar med fjärrkyla, bergkyla, absorptionskyla och kompressorkyla. Fjärrkylan är idag inte ett möjligt alternativ då det fortfarande inte finns ett fjärrkylanät men diskussionerna pågår om ett sådant nät och på grund av detta är fjärrkyla med som en möjlig framtida lösning. Undersökningen visar att fjärrkyla inte är ett lönsamt alternativ, detta eftersom man behöver behålla nuvarande lösning fram till dess. Absorptionskyla är inte heller ett bra alternativ och det beror på det höga fjärrvärmepriset. Det visar sig att lösningen med bergkyla eller kompressorkyla är de bästa alternativen där en kompressordriven kylmaskin ses som den mest lönsammaste men ur en miljöaspekt är den det mindre bra även om den kylmaskin som används i denna undersökning använder sig av ett köldmedium med förhållandevis lågt GWP-värde. / This study’s purpose is to give suggestions of a new cooling system in a commercial building. The current system implies that the cooling come from tap cold water that flushes into a heat exchanger, this solution is both expensive and have a bad impact on the environment. The property owner isn’t satisfied with this and want to remake the system. There isn`t many measurement values that I can use to calculate the effect and energy needs for the building except the water consumption in the cooling system. Because of this uncertainty two cases have been used in this study. The first has an effect need of 80 kW and the other have an effect around 130 kW. From these two cases has an effect and energy profile been made from each of the two cases. With the profiles made, can a new solution be presented and in this study we have four different methods for the cooling system. An investigation has been made on district cooling, ground cooling, absorption cooling and compressor cooling. The district cooling isn`t possible today because it doesn’t exist but the local energy company having discussions about it and because of this, district cooling is a possible future solution. The study shows that to wait for a district cooling isn´t a profitable solution, neither is the solution with the absorption cooler, the absorption machine is being driven by district heat and the price is too high in Bollnäs. This study shows that ground cooling or compressor cooling are the best options in this case. The compressor cooling is the most profitable, but it has a downside in the environment perspective. All energy is based on electricity energy, and the refrigerant can affect the environment in a bad way if it´s a leak. But I should say that the cooling machine used in this study uses a refrigerant that has a relatively low GWP-value.

Page generated in 0.069 seconds