• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Geodetic methods of mapping earthquake-induced ground deformation and building damage

Diederichs, Anna K. 25 August 2020 (has links)
I use temporal lidar and radar to reveal fault rupture kinematics and to test a method of mapping earthquake-induced structural damage. Using pre- and post-event data, these applications of remote technology offer unique perspectives of earthquake effects. Lidar point clouds can produce high resolution, three-dimensional terrain maps, so subtle landscape shifts can be discerned through temporal analysis, providing detailed imagery of co-seismic ground displacement and faulting. All-weather radar systems record back-scattered signal amplitude and phase. Pre- and post-event comparisons of phase can illuminate co-seismic structural damage using an oblique look angle, most sensitive to changes in building heights. Extracted information from these geodetic methods may be used to inform decisions on future earthquake modeling and emergency response. In the first major section of this thesis, I calculate co-seismic 3D ground deformation produced by the Papatea fault using differential lidar. I demonstrate that this fault - a key element within the 2016 Mw 7.8 Kaikoura earthquake - has a distinctly non-planar geometry, far exceeded typical co-seismic slip-to-length ratios, and defied Andersonian mechanics by slipping vertically at steep angles. Its surface deformation is poorly reproduced by elastic dislocation models, suggesting the Papatea fault did not release stored strain energy as typically assumed, perhaps explaining its seismic quiescence in back-projections. Instead, it slipped in response to neighboring fault movements, creating a localized space problem, accounting for its anelastic deformation field. Thus, modeling complex, multiple-fault earthquakes as slip on planar faults embedded in an elastic medium may not always be appropriate. For the second major part of this thesis, I compare mean values of interferometric synthetic aperture radar (InSAR) coherence change across four case studies of earthquake-induced building damage. These include the 2016 Amatrice earthquake, the 2017 Puebla-Morelos earthquake, the 2017 Sarpol-e-Zahab earthquake, and the 2018 Anchorage earthquake. I examine the influences of environmental and urban characteristics on co-seismic coherence change using Sentinel-1 imagery and compare the outcomes of various damage levels. I do not find consistent values of mean coherence change to distinguish levels of damage across the case studies, indicating coherence change values vary with location, environment, and damage pattern. However, this method of damage mapping shows potential as a useful tool in earthquake emergency response, capable of quickly identifying localized areas of high damage in areas with low snow and vegetation cover. Given the large spatial coverage and relatively quick, low-cost acquisition of SAR imagery, this method could provide damage estimates for unsafe or remote regions or for areas unable to self-report damage. / Graduate
2

Ground displacements and pipe response during pulled-in-place pipe installation.

Cholewa, Johnathan 02 April 2009 (has links)
Polymer pipes, typically high density polyethylene (HDPE), can be pulled-into-place, avoiding traditional cut-and-cover construction, using pipe bursting and horizontal directional drilling (HDD) pipe installation techniques. Of particular interest, are the ground displacements, induced by cavity expansion, associated with these techniques and the strains that develop in existing pipes in response to these displacements. Further, the axial stress-strain response of the new HDPE pipe during and after the cyclic pulling force history required to pull the pipe into place is of interest. Surface displacements and strains in an adjacent polyvinyl chloride (PVC) pipe induced by static pipe bursting were measured during the replacement of a new unreinforced concrete pipe. For the pipe bursting geometry tested, the maximum vertical surface displacement measured at the ground surface was 6 mm, while the distribution of vertical surface displacements extended no more than 2 m on either side of the centreline. The maximum longitudinal strain measured in the PVC pipe was less than 0.1% and its vertical diameter decreased by only 0.5%, suggesting that pipe bursting did not jeopardize the long-term performance of the water pipe tested. In addition, results from identical stress relaxation and creep tests performed on whole pipe samples and coupons trimmed from a pipe wall were compared, and these demonstrated that the coupons exhibited higher modulus than the pipe samples. Therefore, isolated pipe samples, as opposed to coupons, were tested to quantify the stress-strain response of HDPE pipe during the simulated installation, strain recovery, and axial restraint stages of HDD. Axial strains were found to progressively accumulate when an HDPE pipe sample was subjected to the cyclic stress history used to simulate an HDD installation. It was shown that existing linear and nonlinear viscoelastic models can serve as predictive design tools for estimating the cyclic strain history of HDPE pipe during installation. For the specific conditions examined, the tensile axial stresses redeveloped in the pipe samples, once restrained, were not large enough to lead to long-term stress conditions conducive to slow crack growth even when the short-term performance limits were exceeded by a factor of 1.5. / Thesis (Ph.D, Civil Engineering) -- Queen's University, 2009-04-01 18:19:24.434

Page generated in 0.0751 seconds