• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design Tool for a Ground-Coupled Ventilation System

Alfadil, Mohammad Omar 26 April 2019 (has links)
Ground-coupled ventilation (GCV) is a system that exchanges heat with the soil. Because ground temperatures are relatively higher during the cold season and lower during the hot season, the system takes advantage of this natural phenomenon. This research focused on designing a ground-coupled ventilation system evaluation tool of many factors that affect system performance. The tool predicts the performance of GCV system design based on the GCV system design parameters including the location of the system, pipe length, pipe depth, pipe diameter, soil type, number of pipes, volume flow rate, and bypass system. The tool uses regression equations created from many GCV system design simulation data using Autodesk Computational Fluid Dynamics software. As a result, this tool helps users choose the most suitable GCV system design by comparing multiple GCV systems' design performances and allows them to save time, money, and effort. / Doctor of Philosophy / Ground-coupled ventilation (GCV) is a system that exchanges heat with the soil. Because ground temperatures are relatively higher during the cold season and lower during the hot season, the system takes advantage of this natural phenomenon. This research focused on designing a ground-coupled ventilation system evaluation tool of many factors that affect system performance. The tool predicts the performance of GCV system design based on the GCV system design parameters including the location of the system, pipe length, pipe depth, pipe diameter, soil type, number of pipes, volume flow rate, and bypass system. The tool uses equations created from many GCV system designs’ simulation data using simulation software. As a result, this tool helps users choose the most suitable GCV system design by comparing multiple GCV system designs’ performance and allows them to save time, money, and effort.

Page generated in 0.1436 seconds