• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 4
  • Tagged with
  • 11
  • 11
  • 11
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Extreme ground effect

Read, Gillian Margaret. January 1988 (has links) (PDF)
Bibliography: leaves 117-120.
2

Extreme ground effect /

Read, Gillian Margaret. January 1988 (has links) (PDF)
Thesis (Ph. D.)--University of Adelaide, 1988. / Includes bibliographical references (leaves 117-120).
3

Extreme ground effect / by Gillian Margaret Read

Read, Gillian Margaret January 1988 (has links)
Bibliography: leaves 117-120 / vii, 120 leaves : ill ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Thesis (Ph.D.)--Dept. of Applied Mathematics, University of Adelaide, 1988
4

Theory of an air cushion landing system for aircraft /

Digges, Kennerly Hite January 1971 (has links)
No description available.
5

A full-engulfment engineering model, and its experimental and numerical verification, for the response of a rigid body to ground-shock /

Welch, Charles Robert, January 1993 (has links)
Thesis (Ph. D.)--Virginia Polytechnic Institute and State University, 1993. / Vita. Abstract. Includes bibliographical references (leaves 183-190). Also available via the Internet.
6

Design, construction, and evaluation of a peripheral jet ground effect machine

Jensen, Robert Harold, January 1966 (has links)
Thesis (M.S.)--University of Wisconsin--Madison, 1966. / eContent provider-neutral record in process. Description based on print version record. Bibliography: l. 126-128.
7

Computational analysis of airfoils in ground effect for use as a design tool

Smith, Justin L. January 2007 (has links)
Thesis (M.S.)--West Virginia University, 2007. / Title from document title page. Document formatted into pages; contains viii, 59 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 51-52).
8

A theoretical and experimental investigation of the annular jet ground effect machine

Graham, William Alexander January 1960 (has links)
In this work the infrared absorption of neutron irradiated silicon was compared to that of non-irradiated silicon at room and liquid nitrogen temperatures. It was found that instead of the 1.75 micron absorption band that has been mentioned in numerous papers transmission was completely cut off below about 2.5 microns at room temperature and about 1.8 microns at liquid nitrogen temperature. A weak absorption band was noted at 4.4 microns for all three samples at liquid nitrogen temperature and the two irradiated samples at room temperature. Absorption due to free carriers depressed at the longer wavelengths (10-15 microns) with irradiation and cooling as was expected from past experiments. The resistivity of Si₄ increased from an assumed initial value of 10³ ohm-om to 1.89 x 10⁵ ohm-om. / Master of Science
9

Comparison of dynamic and unconfined compression strength for machine footing design

Brennan, Jim January 2011 (has links)
Typescript (photocopy). / Digitized by Kansas Correctional Industries
10

A full-engulfment engineering model, and its experimental and numerical verification, for the response of a rigid body to ground-shock

Welch, Charles Robert 19 September 2008 (has links)
In this study, a new engineering model is presented which treats the motions of a rigid body to ground shock. A rigid body is defined as one whose deformations are small compared to the deformations of the surrounding media. The new model treats non-planar normal loads on the structure, tensile cut-off constraints at the upstream and downstream faces of the structure, and shear forces on the lateral surfaces of the structure. It assumes linear elastic material properties for all materials, and collinearity between reflected and transmitted particle velocities and stresses. An important feature of the model is that it incorporates the effects of wave diffraction around the rigid body through simple bounding arguments on the conditions which prevail in the shadow zone of the structure at early-times, intermediate-times, and late-times after the wave has engulfed the rigid body. The resulting expressions are uncomplicated, and provide bounds on the structure’s motion. The model was tested against a series of linear elastic finite element calculations and was found to be accurate, and able to explain the velocity overshoot which, while not widely known, accompanies the motions of rigid bodies under certain circumstances. The model was also tested against the results of a high-explosive test in sand, and a high explosive test in a competent shale, by treating the ground motion instrument canisters on the tests as rigid bodies. Again the model was found to be accurate, and accounted for the differences observed between finite difference predictions of the flow fields and the measured canisters’ responses. The model is expected to find application in aiding in the interpretation of ground motion measurements from explosion tests, in the design of ground motion transducers, and as an aid in the vulnerability analysis of underground Structures to the effects from large explosions. / Ph. D.

Page generated in 0.0991 seconds