Spelling suggestions: "subject:"groundnuts - vitamin B1"" "subject:"groundnuts - citamin B1""
1 |
Computational And Biochemical Studies On The Enzymes Of Type II Fatty Acid Biosynthesis Pathway : Towards Antimalarial And Antibacterial Drug DiscoveryKumar, Gyanendra 02 1900 (has links)
Malaria, caused by the parasite Plasmodium, continues to exact high global morbidity and mortality rate next only to tuberculosis. It causes 300-500 million clinical infections out of which more than a million people succumb to death annually. Worst affected are the children below 5 years of age in sub-Saharan Africa. Plasmodium is a protozoan parasite classified under the phylum Apicomplexa that also includes parasites such as Toxoplasma, Lankestrella, Eimeria and Cryptosporidium. Of the four species of Plasmodium affecting man viz., P. falciparum, P. vivax, P. ovale and P. malariae, Plasmodium falciparum is the deadliest as it causes cerebral malaria. The situation has worsened recently with the emergence of drug resistance in the parasite. Therefore, deciphering new pathways in the parasite for developing lead antimalarial compounds is the need of the hour. The discovery of the type II fatty acid biosynthesis pathway in Plasmodium falciparum has opened up new avenues for the design of new antimalarials as this pathway is different from the one in human hosts. Although many biochemical pathways such as the purine, pyrimidine and carbohydrate metabolic pathways, and the phospholipid, folate and heme biosynthetic pathways operate in the malaria parasite and are being investigated for their amenability as antimalarial therapeutic targets, no antimalarial of commercial use based on the direct intervention of these biochemical pathways has emerged so far. This is due to the fact that the structure and function of the targets of these drugs overlaps with that of the human host.
A description of the parasite, its metabolic pathways, efforts to use these pathways for antimalarial drug discovery, inhibitors targeting these pathways, introduction to fatty acid biosynthesis pathway, discovery of type II fatty acid biosynthesis pathway in Plasmodium falciparum and prospects of developing lead compounds towards antimalarial drug discovery is given in Chapter 1 of the thesis.
In the exploration of newly discovered type II fatty acid biosynthesis pathway of P. falciparum as a drug target for antimalarial drug discovery, one of the enzymes; β-hydroxyacyl- acyl carrier protein dehydratase (PfFabZ) was cloned and being characterized in the lab. The atomic structure of PfFabZ was not known till that point of time. Chapter 2 describes the homology modeled structure of PfFabZ and docking of the discovered inhibitors with this structure to provide a rationale for their inhibitory activity. Despite low sequence identity of ~ 21% with the closest available atomic structure then, E. coli FabA, a good model of PfFabZ could be built. A comparison of the modeled structure with recently determined crystal structure of PfFabZ is provided and design of new potential inhibitors is described. This study provides insights to further improve the inhibition of this enzyme.
Enoyl acyl carrier protein reductase (ENR) is the most important enzyme in the type II fatty acid biosynthesis pathway. It has been proved as an important target for antibacterial as well as antimalarial drug discovery. The most effective drug against tuberculosis – Isoniazid targets this enzyme in M. tuberculosis. The well known antibacterial compound – Triclosan, a diphenyl ether, also targets this enzyme in P. falciparum. I designed a number of novel diphenyl ether compounds. Some of these compounds could be synthesized in the laboratory. Chapter 3 describes the design, docking studies and inhibitory activity of these novel diphenyl ether compounds against PfENR and E. coli ENR. Some of these compounds inhibit PfENR in nanomolar concentrations and EcENR in low micromolar concentrations, and many of them inhibit the growth of parasites in culture also. The structure activity relationship of these compounds is discussed that provides important insights into the activity of this class of compounds which is a step towards developing this class of compounds into an antimalarial and antibacterial candidate drugs.
Components of the green tea extract and polyphenols are well known for their medicinal properties since ages. Recently they have been shown to inhibit components of the bacterial fatty acid biosynthesis pathway. Some selected tea catechins and polyphenols were tested in the laboratory for their inhibitory activity against PfENR. I conducted docking studies to find their probable binding sites in PfENR. On kinetic analysis of their inhibition, these compounds were found to be competitive with respect to the cofactor NADH. This has an implication that they could potentiate inhibition of PfENR by Triclosan in a fashion similar to that of NADH. As a model case, one of the tea catechins; EGCG ((-) Epigalocatechin gallate) was tested for this property. Indeed, in the presence of EGCG, the inhibition of PfENR improved from nanomolar to picomolar concentration of Triclosan.conducted molecular modeling studies and propose a model for the formation of a ternary complex consisting of EGCG, Triclosan and PfENR. Docking studies of these inhibitors and a model for the ternary complex is described in Chapter 4. Docking simulations show that these compounds indeed occupy NADH binding site. This study provides insights for further improvements in the usage of diphenyl ethers in conjugation or combination with tea catechins as possible antimalarial therapeutics.
In search for new lead compounds against deadly diseases, in silico virtual screening and high throughput screening strategies are being adopted worldwide. While virtual screening needs a large amount of computation time and hardware, high throughput screening proves to be quite expensive. I adopted an intermediate approach, a combination of both these strategies and discovered compounds with a 2-thioxothiazolidin-4-one core moiety, commonly known as rhodanines as a novel class of inhibitors of PfENR with antimalarial properties. Chapter 5 describes the discovery of this class of compounds as inhibitors of PfENR. A small but diverse set of 382 compounds from a library of ~2,00,000 compounds was chosen for high throughput screening. The best compound gave an IC50 of 6.0 µM with many more in the higher micromolar range. The compound library was searched again for the compounds similar in structure with this best compound, virtual screening was conducted and 32 new compounds with better binding energies compared to the first lead and reasonable binding modes were tested. As a result, a new compound with an IC50 of 240 nM was discovered. Many more compounds gave IC50 values in 3-15 µM range. The best inhibitor was tested in red blood cell cultures of Plasmodium, it was found to inhibit the growth of the malaria parasite at an IC50 value of 0.75 µM. This study provides a new scaffold and lead compounds for further exploration towards antimalarial drug discovery.
The summary of the results and conclusions of studies described in various chapters is given in Chapter 6. This chapter concludes the work described in the thesis.
Cloning, over-expression and purification of PanD from M. tuberculosis, FabA and FabZ from E. coli are described in the Appendix.
|
Page generated in 0.0766 seconds