• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1893
  • 362
  • 283
  • 84
  • 83
  • 49
  • 35
  • 31
  • 20
  • 20
  • 20
  • 18
  • 17
  • 17
  • 16
  • Tagged with
  • 3394
  • 914
  • 557
  • 390
  • 355
  • 271
  • 258
  • 257
  • 245
  • 229
  • 229
  • 217
  • 217
  • 213
  • 211
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

Hydrogeology of the Scioto drainage basin /

Allong, Albert Francis January 1971 (has links)
No description available.
172

Analysis of factors affecting water level recovery data

Hargis, David Robert. January 1979 (has links)
Water level recovery data collected in wells following controlled pumping tests are affected by both borehole and formation factors. The borehole factors comprise those effects attributed to the presence of the wellbore, such as step-increases in pumping rate, wellbore storage, well efficiency, and skin effects. The formation factors comprise those effects associated with the geologic environment in which an aquifer system occurs, such as variation of the coefficient of storage, and aquifer barrier boundaries. The recovery data should plot as a straight line on a semilogarithmic plot. Step-increases in the discharge rate during the pumping period cause the water level recovery plot to be concave downward. The curvature of the recovery data plot can be eliminated by applying a correction proposed by Harrill in 1970. However, the effect of step-increases in pumping rate on the recovery data is minimal so long as the duration of the pumping steps is less than about one-third of the total duration of pumping. The well efficiency and skin effects cause an additional component of drawdown in a pumped well, which is manifested as an initially rapid recovery rate after pumping stops. The effects of skin and well efficiency are usually dissipated within a few minutes after pumping stops. Wellbore storage effects can be critical in large diameter wells (wellbore radius greater than 0.5 feet) that penetrate aquifers with transmissivities less than about 2,700 feet squared per day. The time required to dissipate wellbore storage effects in the water level recovery data is inversely proportional to the aquifer transmissivity, and directly proportional to the borehole size. Variation of the coefficient of storage during the recovery period results in a semi-logarithmic recovery plot that is concave downward. The curvature of the recovery plot increases as the variation of the coefficient of storage increases. Variation in the coefficient of storage of one order of magnitude during the recovery period introduces an error of more than fifty percent in the transmissivity calculation at late recovery times. The recovery plot of data collected in a well influenced by a barrier boundary defines two straight line segments. The early-time straight line segment has a slope one-half that of the late-time straight line segment. Analysis of the early-time straight line yields the true aquifer transmissivity. Analysis and interpretation of water level recovery data collected in 59 wells following controlled pumping tests in aquifers of various rock types indicate that, in general, the shape of the recovery plot can be used to diagnose the presence of skin effects, low well efficiency, wellbore storage, and variation of the coefficient of storage. Analysis of data from seventeen wells in alluvial aquifers and thirteen wells in sandstone aquifers indicates that the concave downward recovery plot is the most common type of response curve. This shape of recovery curve indicates that the coefficient of storage is commonly smaller during the recovery period than during the drawdown period. Recovery data collected in twenty wells in fractured hard-rock aquifers indicate that the characteristic shape of the recovery plot predicted by Warren and Root in 1963 is generally diagnostic of flow in non-homogeneous, anisotropic, fractured aquifers. When the fracturing approaches being homogeneous and isotropic, the recovery plot can resemble data collected in non-fractured rocks. Recovery data from nine wells in composite limestone-sandstone aquifers indicate that the recovery plot is sometimes similar to the concave downward shape exhibited in sandstone and alluvial aquifers, and sometimes is similar to the shape predicted by Warren and Root for fractured rocks.
173

Survival and recovery characteristics of Arcobacter butzleri in groundwater microcosms

McElwain, Robert Darrell, January 2002 (has links)
Thesis (M.S.)--West Virginia University, 2002. / Title from document title page. Document formatted into pages; contains viii, 71 p. : ill. (some col.). Vita. Includes abstract. Includes bibliographical references (p. 65-70).
174

Modelling of dissolution and bioremediation of chlorinated ethene DNAPL source zones

Kokkinaki, Amalia 10 January 2014 (has links)
This thesis investigated the dissolution of dense non aqueous phase liquids (DNAPL) source zones in the subsurface and the effectiveness of enhanced bioremediation for the treatment of chlorinated ethene DNAPLs, using numerical modeling. For this purpose, an existing multiphase numerical model was extended to include comprehensive models for the processes of dissolution and reaction. The first part of the thesis examined DNAPL dissolution. First, a thermodynamic-based dissolution model was validated using experimental data from two complex heterogeneous DNAPL releases. Model predictions for DNAPL spatial distribution and effluent concentrations agreed well with experimental measurements, without requiring calibration. This is the first successful application of a predictive dissolution model in the literature. Model results showed the important effects of relative permeability and interfacial areas on dissolution rates. Then, the thermodynamic dissolution model was compared to simpler models typically used in the literature. Five Sherwood-Gilland (SG) empirical correlations were evaluated and their limitations were illustrated. A new dissolution model was proposed that combined the predictive ability of the thermodynamic model and the simplicity of SG models, and is applicable for complex source zones. Lastly, the relationship between the DNAPL source architecture and downstream concentrations was investigated, focusing on multistage concentration profiles. A new upscaled model was proposed that is able to capture such complex behavior. In the second part of this thesis the thermodynamic dissolution model was combined with a model for reductive dechlorination of chlorinated ethenes to simulate DNAPL bioremediation. Simulations were conducted for simple DNAPL source zones to investigate the impact of dissolution-related processes on bioremediation effectiveness. Dissolution kinetics and back-partitioning of daughter products in the DNAPL were shown to affect dechlorination. Then, the investigation was extended to DNAPL source zones of complex architectures in heterogeneous domains, illustrating the importance of the source zone architecture for the effectiveness of DNAPL bioremediation. Overall, this thesis presents a comprehensive numerical model that will be an important research tool for evaluating the effectiveness of in-situ bioremediation for DNAPL source zones, and will provide the means for a better understanding and control of the critical factors affecting this technology in the field.
175

Modelling of dissolution and bioremediation of chlorinated ethene DNAPL source zones

Kokkinaki, Amalia 10 January 2014 (has links)
This thesis investigated the dissolution of dense non aqueous phase liquids (DNAPL) source zones in the subsurface and the effectiveness of enhanced bioremediation for the treatment of chlorinated ethene DNAPLs, using numerical modeling. For this purpose, an existing multiphase numerical model was extended to include comprehensive models for the processes of dissolution and reaction. The first part of the thesis examined DNAPL dissolution. First, a thermodynamic-based dissolution model was validated using experimental data from two complex heterogeneous DNAPL releases. Model predictions for DNAPL spatial distribution and effluent concentrations agreed well with experimental measurements, without requiring calibration. This is the first successful application of a predictive dissolution model in the literature. Model results showed the important effects of relative permeability and interfacial areas on dissolution rates. Then, the thermodynamic dissolution model was compared to simpler models typically used in the literature. Five Sherwood-Gilland (SG) empirical correlations were evaluated and their limitations were illustrated. A new dissolution model was proposed that combined the predictive ability of the thermodynamic model and the simplicity of SG models, and is applicable for complex source zones. Lastly, the relationship between the DNAPL source architecture and downstream concentrations was investigated, focusing on multistage concentration profiles. A new upscaled model was proposed that is able to capture such complex behavior. In the second part of this thesis the thermodynamic dissolution model was combined with a model for reductive dechlorination of chlorinated ethenes to simulate DNAPL bioremediation. Simulations were conducted for simple DNAPL source zones to investigate the impact of dissolution-related processes on bioremediation effectiveness. Dissolution kinetics and back-partitioning of daughter products in the DNAPL were shown to affect dechlorination. Then, the investigation was extended to DNAPL source zones of complex architectures in heterogeneous domains, illustrating the importance of the source zone architecture for the effectiveness of DNAPL bioremediation. Overall, this thesis presents a comprehensive numerical model that will be an important research tool for evaluating the effectiveness of in-situ bioremediation for DNAPL source zones, and will provide the means for a better understanding and control of the critical factors affecting this technology in the field.
176

A real-time aquifer management tool

Jones, Lawson Elliott 12 1900 (has links)
No description available.
177

Origin of major springs in the Amargosa Desert of Nevada and Death Valley, California

Winograd, Isaac Judah, January 1971 (has links) (PDF)
Thesis (Ph. D. - Geosciences)--University of Arizona. / Includes bibliographical references.
178

The occurrence of dissolved oxygen in ground waters of the Upper San Pedro Basin, Cochise County, Arizona

DeWald, Lloyd Brian. January 1984 (has links) (PDF)
Thesis (M.S. - Hydrology and Water Resources)--University of Arizona, 1984. / Includes bibliographical references (leaves 65-68).
179

Natural iodine-129 as a ground-water tracer

Fabryka-Martin, June Taylor. January 1984 (has links) (PDF)
Thesis (M.S. - Hydrology and Water Resources)--University of Arizona, 1984. / Includes bibliographical references (leaves 137-149).
180

Temperature as an indicator of flow in fractured rocks near Oracle, Arizona

Woloshun, Colleen Loeven, January 1989 (has links) (PDF)
Thesis (M.S. - Hydrology and Water Resources)--University of Arizona, 1989. / Includes bibliographical references (leaves 241-248).

Page generated in 0.0649 seconds