Spelling suggestions: "subject:"group signature"" "subject:"group ignature""
11 |
Ochrana soukromí na Internetu / Internet privacy protectionMalina, Lukáš January 2010 (has links)
Anonymous authentication is a mean of authorizing a user without leakage of user personal information. The technology of Anonymous Authentication Systems (AAS) provides privacy of the user and yet preserves the security of the system. This thesis presents the basic cryptographic primitives, which can provide anonymous authentication. Among these primitives there are usually some asymmetric cryptosystems, but an essential part of anonymous authentication is based on zero knowledge protocols, blind signature schemes, threshold group schemes, etc., that are presented in Chapter 1. Generally, Anonymous Authentication Systems have application as electronic coin, electronic cash, group signatures, anonymous access systems, electronic vote, etc., which are analyzed and presented in Chapters 2 and 3. In the practical section, the implementation (in the environment .NET in C#) of the AAS system is presented and described in Chapter 4, which is being developed at the FEEC BUT.
|
12 |
Zabezpečení datové komunikace s ochranou soukromí / Secure and privacy-preserving data communicationBernát, Michal January 2015 (has links)
This thesis discusses the possibility of ensuring the safety, integrity and authenticity of data communication with respect to user privacy. This thesis describes the fundamentals of smart grid networks with capabilities of existing forms of security to communications that have been chosen as a target for application deployment of group signatures to ensure the security, integrity and authenticity of data communications. It describes the concept of a zero-knowledge and cryptography primitives. Further, the basic principles are presented, the history of development, and various schemes are compared based on the construction and performance. The second part is given to the deployment and optimization of group signatures for computationally limited devices. Within the draft report were to be implemented in the Java language chosen scheme HLCCN, DP and BBS. They were then tested under various platforms which were measured and evaluated performance parameters of the schemes. The optimization of the work is focused on the times of signatures, which are critical to a smart grid system. Under the platforms are deployed pre-processed pairing optimization methods and other methods resulting from the deployment platform as JPBWrappera and native libraries to deliver more efficient times of sgnaiture. At the end of the thesis are evaluated achievements of optimization methods and the appropriateness of the deployment of smart grids.
|
Page generated in 0.0486 seconds