• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Relations entre le nombre de classes et les formes modulaires

Ayotte, David 29 November 2019 (has links)
En 2010, Dummigan et Heim ont démontré deux résultats en lien avec le nombre de classes du corps quadratique Q(√-p), dénoté h(-p), et l'espace des formes cuspidales de poids k pour SL2(ℤ), dénoté Sk(SL2(ℤ)), où p ≡ 3 (mod 4) est un premier et k = (p + 1)/2. Ainsi, dans ce mémoire, on s'intéresse à présenter les démonstrations de Dummigan et Heim avec davantage de détails et de généraliser leurs résultats. Tout d'abord, le premier résultat a_rme que la trace de la fonction L carrée symétrique, un nombre rationnel qui dépend uniquement du poids de l'espace Sk(SL2(ℤ)), possède un unique facteur de p au dénominateur si et seulement si h(-p) > 1. De plus, si h(-p) =1, alors la trace ne contient aucun facteur de p. Ainsi, en utilisant les congruences de Kummer pour les nombres de Bernoulli, on démontre qu'il est possible de généraliser ce résultat pour l'espace Sk'(SL2(ℤ) ou k' ≡ k (mod p - 1). En rapport avec ce résultat, une conjecture est énoncée et des évidences numériques avec PARI/GP sont données. Ensuite, Dummigan et Heim ont démontré, en utilisant la théorie des représentations galoisiennes, qu'il existe une forme cuspidale f = Σn≥1 anqn de poids k pour SL2 (ℤ) qui satisfait une congruence diédrale en p, c'est-à-dire p

Page generated in 0.0992 seconds