Spelling suggestions: "subject:"croups"" "subject:"3groups""
441 |
The Grothendieck group.Mason, Gordon Robert. January 1965 (has links)
No description available.
|
442 |
Chevalley groups and simple lie algebrasChang, Hai-Ching. January 1967 (has links)
No description available.
|
443 |
On the cohomology of profinite groups.Mackay, Ewan January 1973 (has links)
No description available.
|
444 |
Van der Waerden invariant and Wigner coefficients for some compact groups.Hongoh, Masamichi. January 1973 (has links)
No description available.
|
445 |
Computing with finite groupsYoung, Kiang-Chuen. January 1975 (has links)
No description available.
|
446 |
On near rings associated with free groupsZeamer, Richard Warwick. January 1977 (has links)
No description available.
|
447 |
Structure theorems for infinite abelian groupsCutler, Alan January 1966 (has links)
Thesis (M.A.)--Boston University / PLEASE NOTE: Boston University Libraries did not receive an Authorization To Manage form for this thesis or dissertation. It is therefore not openly accessible, though it may be available by request. If you are the author or principal advisor of this work and would like to request open access for it, please contact us at open-help@bu.edu. Thank you. / In this paper we have determined the structure of divisible groups, certain primary groups, and countable torsion groups.
Chapter 1 introduces two important infinite abelian groups, R and Z(p^∞). The structure of these groups is completely known and we have given most of the important properties of these groups in Chapter 1. Of special importance is the fact that a divisible group can be decomposed into a direct sum of groups each isomorphic to R or Z(p^∞). This is Theorem 2.12 and it classifies all divisible groups in terms of these two well-known groups.
Theorem 1.6 is of great importance since it reduces the study of torsion groups to that of primary groups. We now have that Theorems 3.3 and 5.5 apply to countable torsion groups as well as primary groups.
Theorem 3.3 gives a necessary and sufficient condition for an infinite torsion group to be a direct sum of cyclic groups. These conditions are more complicated than the finite case. From Theorem 3.3, we derived Corollary 3.5. This result is used later on to get that the Ulm factors of a group are direct sums of cyclic groups.
In essence, Ulm's theorem says that a countable reduced primary group can be determined by knowing its Ulm type and its Ulm sequence. Now by Corollary 3.5, we have only to look at the number of cyclic direct summands of order p^n (for all integers n) for each Ulm factor. This gives us a system of invariants which we can assign to the group. Once again, these invariants are much harder to arrive at than in the finite case. / 2999-01-01
|
448 |
Symmetries of free and right-angled Artin groupsWade, Richard D. January 2012 (has links)
The objects of study in this thesis are automorphism groups of free and right-angled Artin groups. Right-angled Artin groups are defined by a presentation where the only relations are commutators of the generating elements. When there are no relations the right-angled-Artin group is a free group and if we take all possible relations we have a free abelian group. We show that if no finite index subgroup of a group $G$ contains a normal subgroup that maps onto $mathbb{Z}$, then every homomorphism from $G$ to the outer automorphism group of a free group has finite image. The above criterion is satisfied by SL$_m(mathbb{Z})$ for $m geq 3$ and, more generally, all irreducible lattices in higher-rank, semisimple Lie groups with finite centre. Given a right-angled Artin group $A_Gamma$ we find an integer $n$, which may be easily read off from the presentation of $A_G$, such that if $m geq 3$ then SL$_m(mathbb{Z})$ is a subgroup of the outer automorphism group of $A_Gamma$ if and only if $m leq n$. More generally, we find criteria to prevent a group from having a homomorphism to the outer automorphism group of $A_Gamma$ with infinite image, and apply this to a large number of irreducible lattices as above. We study the subgroup $IA(A_Gamma)$ of $Aut(A_Gamma)$ that acts trivially on the abelianisation of $A_Gamma$. We show that $IA(A_Gamma)$ is residually torsion-free nilpotent and describe its abelianisation. This is complemented by a survey of previous results concerning the lower central series of $A_Gamma$. One of the commonly used generating sets of $Aut(F_n)$ is the set of Whitehead automorphisms. We describe a geometric method for decomposing an element of $Aut(F_n)$ as a product of Whitehead automorphisms via Stallings' folds. We finish with a brief discussion of the action of $Out(F_n)$ on Culler and Vogtmann's Outer Space. In particular we describe translation lengths of elements with regards to the `non-symmetric Lipschitz metric' on Outer Space.
|
449 |
ACTIONS OF AUTOMORPHISM GROUPS OF FREE GROUPS ON SPACES OF JACOBI DIAGRAMS. II / ヤコビ図の空間への自由群の自己同型群の作用IIKatada, Mai 23 March 2023 (has links)
京都大学 / 新制・課程博士 / 博士(理学) / 甲第24383号 / 理博第4882号 / 新制||理||1699(附属図書館) / 京都大学大学院理学研究科数学・数理解析専攻 / (主査)教授 葉廣 和夫, 教授 加藤 毅, 教授 入谷 寛 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
|
450 |
Symmetric representation of elements of finite groupsGeorge, Timothy Edward 01 January 2006 (has links)
The purpose of the thesis is to give an alternative and more efficient method for working with finite groups by constructing finite groups as homomorphic images of progenitors. The method introduced can be applied to all finite groups that possess symmetric generating sets of involutions. Such groups include all finite non-abelian simple groups, which can then be constructed by the technique of manual double coset enumeration.
|
Page generated in 0.0353 seconds