• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Influence of static magnetic fields and solutal buoyancy on silicon dissolution into germanium melt

Kidess, Anton 26 November 2009 (has links)
Elemental semiconductors like silicon and germanium have been used since the beginning of the electronics industry. Silicon has dominated research and production and thus silicon based devices can be produced at the lowest cost using the most mature technology. While dopants can be used to tailor the electric properties of the semiconductor within certain limits, more flexibility is gained using compound semiconductors such as silicon-germanium. The electric properties of a compound semiconductor are highly dependant on the composition, which in turn is influenced by the dissolution reaction and flow characteristics during the growth process. Liquid phase diffusion (LPD) is a solution growth technique that has been proposed to grow silicon-germanium seed crystals for other growth techniques. The dissolution of silicon is a limiting factor for the growth rate in LPD and also Bridgman growth techniques. Investigation of the dissolution process is aimed at increasing the growth rate while still maintaining maximum uniformity of the crystal composition. To accomplish this, a static magnetic field was utilized in experiments done by Armour. The experimental results showed that a top seeded configuration without magnetic fields leads to a diffusion driven process and homogeneous dissolution, while the addition of a strong 0.8 Tesla magnetic field resulted in non-uniform and slightly increased dissolution. This work is complementary to the experimental investigation and aims to help understand the influence of magnetic fields on silicon dissolution. For this work, an OpenFOAM magnetohydrodynamics application including heat and species transport and three different magnetic force models has been developed and validated. The simulations done show that an isothermal state is reached within 90 seconds if no temperature gradient is imposed. Additional simulations with a temperature gradient helped to rule out a possible thermal leak in the experimental system, confirming that it must have been close to isothermal. Since the solutal expansion coefficient of has not been measured properly to the Author's knowledge, two possible values for the expansion coefficient have been considered. It has been found that the exact value of the solutal expansion coefficient does not have a great influence on the results of this work.
2

Studium magnetismu vrstevnatých tetragonálních sloučenin na bázi vzácných zemin a uranu / Studium magnetismu vrstevnatých tetragonálních sloučenin na bázi vzácných zemin a uranu

Bartha, Attila January 2015 (has links)
We have studied the interplay between the layered crystal structure and the 5f magnetism in uranium-based tetragonal compounds UnTIn3n+2. Sin- gle crystals of U2RhIn8, URhIn5 and UIn3 were prepared by In self-flux method. The novel U2RhIn8 compound adopts the Ho2CoGa8-type struc- ture with lattice parameters a = 4.6056(6) ˚A and c = 11.9911(15) ˚A. The behavior of U2RhIn8 strongly resembles that of related URhIn5 and UIn3 with respect to magnetization, specific heat and electrical resistivity except for magnetocrystalline anisotropy developing on stacking composition in the series UIn3 vs. U2RhIn8 and URhIn5. U2RhIn8 orders antiferromagnetically below TN = 117 K and exhibits slightly enhanced Sommerfeld coefficient γ = 47 mJ·mol−1 ·K−2 . TN increases with increasing c/a ratio in contrast to the behavior of their CenTIn3n+2 counterparts. Magnetic field leaves the value of the Néel temperature of URhIn5 and U2RhIn8 unaffected up to 9 T. On the other hand, TN increases with applied hydrostatic pressure up to 3.2 GPa with the ∂TN/∂p coefficient resembling URhIn5 and UIn3. Ther- mal expansion of U2RhIn8 reveals a hysteretic behavior of the antiferromag- netic transition pointing to its 1st -order character. The magnetic structure of URhIn5 obtained from neutron diffraction propagates with k = (1 /2, 1 /2, 1 /2) and the...

Page generated in 0.0767 seconds