• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 36
  • 16
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 69
  • 69
  • 16
  • 14
  • 13
  • 13
  • 11
  • 9
  • 8
  • 8
  • 8
  • 8
  • 8
  • 7
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Abiotic stress effects in potato (Solanum tuberosum L.) and sweet potato (Ipomoea batatas [L.] Lam.)

Richardson, Kenneth Vincent Austin January 2000 (has links)
No description available.
2

Mycoplasma pyrimidine deoxynucleotide biosynthesis : molecular characterization of a new family flavin-dependent thymidylate synthase /

Wehelie, Rahma, January 2006 (has links) (PDF)
Diss. (sammanfattning) Uppsala : Sveriges lantbruksuniv., 2006. / Härtill 4 uppsatser.
3

Growth Inhibition of Chlorella Pyrenoidosa TX71105 by an Unknown Soil Bacillus

Harrel, Steve K. 08 1900 (has links)
The purpose of this paper is to present data on the nature of mixed cultures of algae and bacteria and to report new evidence of growth inhibition of Chlorella by a bacterial contaminant isolated from a soil environment.
4

Immunological characteristics of recombinant fragments of the Plasmodium falciparum blood-stage antigen Pf332

Balogun, Halima A. January 2011 (has links)
Effective malaria vaccine might help improve control strategies against malaria, but the complexity of interactions between the parasite and its hosts poses challenges. The asexual blood stage P. falciparum antigen Pf332 has potentials as one of the proteins in understanding the complex host-parasite interactions. The interest in Pf332 as a target for parasite neutralizing antibodies, evolved from previous studies demonstrating that Pf332-reactive antibodies inhibits parasite growth in vitro. The presence of natural P. falciparum infection also indicated that Pf332 has the ability to induce protective antibodies. In paper I, we identified and characterized the immunogenicity of a C-terminal region of Pf332. Immunological analyses carried out with this fragment revealed that rabbit anti-C231 antibodies possess parasite in vitro inhibitory capabilities. In paper II, the functional activity of C231 specific antibodies was confirmed with human-affinity purified antibodies, where the antibodies inhibited late stage parasite development, by the presence of abnormal parasites and disintegrated red cell membranes. Epidemiological data from malaria endemic area of Senegal (Paper III & IV), showed that antibodies were reactive with two different fragments of Pf332 (C231 and DBL). Distribution of anti-C231 antibodies in the IgG subclasses, gave similar levels of IgG2 and IgG3. The levels of anti-C231 antibodies were associated with protection from clinical malaria, but with DBL reactive antibodies IgG3 was associated with protection from clinical malaria. We hereby conclude that antigen Pf332 contains immunogenic epitopes, and is a potential target for parasite neutralizing antibodies. The Pf332 protein should thus be considered as a candidate antigen for inclusion in a subunit P. falciparum malaria vaccine. / At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 2: Submitted. Paper 4: Manuscript.
5

Efficacy and Mechanism of Action of a Novel Class of Antic-Cancer Drugs

Teran, Claudia January 2016 (has links)
The incidence of cancer worldwide has increased over the years, and gastrointestinal cancers (G.I.) are amongst the most common forms of cancer. Nevertheless, there is still no curative treatments for this group of tumors. Nucleoside analogues are widely used in cancer treatment. The prevailing compounds are Gemcitabine (used for pancreatic cancer and other carcinomas), 5-Fluorouracil (used in breast, colon, and other cancers), Cytarabine and Clofarabine (used in leukemias). Gemcitabine, the current standard of care for various forms of solid tumors, has a limited efficacy against pancreatic cancer. The objective of this project was the development of effective drugs against pancreatic cancer. We focused on a novel class of nucleoside analogues designed to bypass the most common cellular road blocks and resistance mechanisms. After an extensive screen for cell killing activity, two lead molecules were exclusively studied: LCB2151 and LCB2132. These two molecules showed high efficacy in killing human cancer cells from three different human G.I. cell lines: BxPC3 and Capan-2, two pancreatic cell lines representative of K-Ras positive and negative tumors, as well as the liver cell line HepG2. LCB2151 showed high efficacy in killing Gemcitabine-resistant cancer cells, and a low toxicity in normal cells. Interestingly, results show that these prodrugs can efficiently bypass key resistance mechanisms developed by cancer cells. The results obtained in this project are promising and could pave the way for a more effective treatment of pancreatic cancer.
6

Analyses of Anandamide-Mediated Growth Inhibition in Physcomitrella Patens

Chilufya, Jedaidah, Kilaru, Aruna 06 April 2016 (has links)
In higher plants, a class of bioactive fatty acid ethanolamides or N-acylethanolamines (NAEs) mediate growth, development, cellular organization and response to stress, in an abscisic acid (ABA)-dependent or independent manner. Unlike in higher plants, Physcomitrella patens, a bryophyte contains anandamide or NAE 20:4, a mammalian endocannabinoid ligand that mediates a multitude of physiological functions including development and stress. Unique lipids in mosses are considered vital for their resilience to environmental stresses; such lipids might enable them to recognize stress at the cellular level, and respond with membrane reorganization and altered growth. Since the identification of anandamide in moss, we have shown that, like abscisic acid (ABA), it inhibits gametophyte growth in a dose-dependent manner and reduced chlorophyll content. It is hypothesized that moss gametophores undergo morphological and cellular changes during anandamide-mediated growth inhibition. To test this, gametophyte growth and morphological changes in phyllodes, under different concentrations of NAE 20:4, were digitally captured using Canon EOS 70D, and analyzed using ImageJ software. NAE 20:4 but not its free fatty acid, arachidonic acid, not only inhibited growth of both shoots and rhizoids in a dose-dependent manner but also showed remarkable cellular changes. Phyllodes and protonemal cells of NAE 20:4 treated plants were further examined under stereo and compound light microscopes. Long- and short-term treatment with anandamide resulted in reduced chloroplast number, cytoplasmic shrinkage and plasmolysis in phyllodes and protonemal cells. A 100 micromolar NAE 20:4 treatment resulted in complete loss of green pigmentation in phyllodes. Effects of anandamide on cytoskeletal organization will be studied using Physcomitrella plants expressing GFP-talin and tubulin, via confocal microscopy. Together, these data will provide insights into anandamide-mediated cellular responses during growth inhibition.
7

Analyses of Anandamide-Mediated Growth Inhibition in Physcomitrella Patens

Chilufya, Jedaidah, Kilaru, Aruna 01 January 2016 (has links)
No description available.
8

Investigating the effects of host factors (proteins and non-proteins) on mycobacteria

Riaz, Muhammad Suleman January 2018 (has links)
Mycobacterium tuberculosis (M.tb), the causative agent of tuberculosis, is one of the leading causes of death due to a single infectious agent and results in more than 1 million human deaths every year. M.tb infection of the host initiates a local inflammatory response, resulting in the migration of a number of host plasma protein and non-protein factors to the site of infection. In addition, some of these factors are also produced locally at the site of infection. It is envisaged that these host factors are likely to come in direct contact with M.tb and immune cells and may modulate the outcome of the infection. In this study, a number of host factors including transferrin, lactoferrin, fibrinogen, C-reactive protein, alpha-2-macroglobulin (α2M), vitronectin, plasminogen, low-density lipoprotein (LDL), high-density lipoprotein (HDL), serotonin, L-alpha dipalmitoyl phosphatidylcholine (DPPC) and platelet activating factor C-16 (PAF C-16) were screened in vitro for their direct effect on the growth of mycobacteria using M.smegmatis as a model. As a result of this screening, PAF C-16, a phospholipid compound was identified that directly inhibited the growth of M.smegmatis and M.bovis BCG in a dose and time-dependent manner. Use of a range of PAF C-16 structural analogues, including Lyso-PAF, PAF C-18, Hexanolamino PAF, 2-O-methyl PAF & Pyrrolidino PAF, revealed that small modifications in structure did not alter the direct growth inhibition property of PAF C-16 and similar levels of M.smegmatis and M.bovis BCG growth inhibition were observed as compared to PAF C-16. Structural dissection of PAF C-16 suggested that the attachment of carbon tail to the glycerol backbone via ether bond at sn-1 position was important for its direct growth inhibition activity against mycobacteria. Microscopy and flow cytometry with PAF C-16 treated M.smegmatis and M.bovis BCG showed damage to the bacterial cell membrane. The addition of membrane-stabilizing agents, α-tocopherol, tween-80 and tween-20, partially mitigated the growth inhibitory effect of PAF C-16. These results suggested that the growth inhibition activity of PAF C-16 against mycobacteria is most likely due to its detergent-like effect, resulting in damage to the bacterial cell membrane. PAF C-16 and its structural analogues were also investigated for their effect on the growth of intracellular M.smegmatis inside THP1 cells. In vitro, PAF C-16, PAF C-18 and Hexanolamino PAF inhibited the growth of intracellular M.smegmatis, whereas, analogues such as Lyso-PAF and 2-O-methyl PAF failed to show any growth inhibitory effect, suggesting that the presence of acetyl group at sn-2 position was important for growth inhibition of intracellular M.smegmatis. Use of PAF receptor antagonists partially mitigated the inhibitory effect of PAF C-16 on the growth of intracellular M.smegmatis, suggesting this inhibition was through receptor-mediated signalling pathways. Blocking of PAF C-16 signalling pathway components such as phospholipase C and phospholipase A2, resulted in the increased survival of intracellular M.smegmatis. Arachidonic acid, a product of PAF C-16 signalling pathway directly inhibited the growth of M.smegmatis. Furthermore, inhibition of iNOS enzyme and antibody-mediated neutralization of TNF-α partially mitigated the inhibitory effect of PAF C-16 on intracellular M.smegmatis growth, suggesting that the production of NO and TNF-α were also involved in PAF C-16 induced intracellular growth inhibition. Overall, this study has identified PAF C-16, its structural analogues such as Lyso-PAF, PAF C-18, Hexanolamino PAF and other compounds including 1-O-hexadecyl-sn-glycerol, miltefosine and hexadecyl lactate with novel anti-mycobacterial activity. Further investigations are needed to demonstrate their effectiveness against M.tb both in vitro and in animal models to assess their therapeutic potential as anti-TB drugs.
9

Antibody responses in Plasmodium falciparum malaria and their relation to protection against the disease

Bolad, Ahmed Kamal January 2004 (has links)
<p>Protective immunity against <i>Plasmodium falciparum</i> may be obtained after repeated exposure to infection. Several studies indicate that immunity against the blood stages of the <i>P. Falciparum</i> infection is mainly antibody mediated. Protective antibodies may act either on their own, mediate antibody-dependent phagocytosis and/or cell-mediated neutralization of parasites. This thesis describes several aspects of humoral immune responses to <i>P. falciparum</i> infection in individuals of different age groups, different genetic background and with different degrees of malaria exposure.</p><p>Several target antigens for antibody-mediated inhibition of parasite growth or invasion have been identified. One such antigen is Pf332, which appears on the surface of parasitized erythrocytes at late trophozoite and schizont stage. This surface exposure makes the antigen a possible target for opsonizing antibodies. We optimized an <i>in vitro</i> assay for studying cellmediated parasite neutralization in the presence of Pf332-reactive antibodies. Our data demonstrate that, Pf332 specific antibodies are able to inhibit parasite growth on their own and in cooperation with human monocytes.</p><p>The <i>P. falciparum</i> parasites have evolved several mechanisms to evade the host neutralizing immune responses. In this thesis, we show that freshly isolated<i> P. falciparum </i>parasites from children living in a malaria endemic area of Burkina Faso were less sensitive for growth inhibition <i>in vitro</i> by autologous immunoglobulins (Ig) compared with heterologous ones. Analyses of two consecutive isolates taken 14 days apart, with regard to genotypes and sensitivity to growth inhibition <i>in vitro</i>, did not give any clear-cut indications on possible mechanisms leading to a reduced inhibitory activity in autologous parasite/antibody combinations. The frequent presence of persisting parasite clones in asymptomatic children indicates that the parasite possesses as yet undefined mechanisms to evade neutralizing immune responses.</p><p>Transmission reducing measures such insecticide treated nets (ITNs) have been shown to be effective in reducing morbidity and mortality from malaria. However, concerns have been raised that ITNs usage could affect the acquisition of malaria immunity. We studied the effect of the use of insecticide treated curtains (ITC) on anti-malarial immune responses of children living in villages with ITC since birth. The use of ITC did neither affect the levels of parasite neutralizing immune responses nor the multiplicity of infection. These results indicate that the use of ITC does not interfere with the acquisition of anti-malarial immunity in children living in a malaria hyperendemic area.</p><p>There is substantial evidence that the African Fulani tribe is markedly less susceptible to malaria infection compared to other sympatrically living ethnic tribes. We investigated the isotypic humoral responses against<i> P. falciparum</i> asexual blood stages in different ethnic groups living in sympatry in two countries exhibiting different malaria transmission intensities, Burkina Faso and Mali. We observed higher levels of the total malaria-specific-IgG and its cytophilic subclasses in individuals of the Fulani tribe as compared to non-Fulani individuals. Fulani individuals also showed higher levels of antibodies to measles antigen, indicating that the intertribal differences are not specific for malaria and might reflect a generally activated immune system in the Fulani.</p>
10

Expressions of mercury-selenium interaction in vitro

Frisk, Peter January 2001 (has links)
<p>Interaction between mercury and selenium has previously been observed both in man and in animals. The aim of this work was to study expressions of interaction between mercury and selenium in human K-562 cells. Inorganic and organic forms of mercury and selenium were used and cells were either pre-treated with selenium or simultaneously exposed to selenium and mercury. Concentrations of selenium and mercury chosen were indicated by a study of growth inhibition in the individual compounds: a low concentration of selenium and selenomethionine induced slight cell growth inhibition, while a high concentration resulted in a notable growth inhibition. Two mercury concentrations were chosen: one with minimal toxicity and another with high cell toxicity. In addition, uptake and retention patterns of selenomethionine and selenite differed in both selenocompounds.</p><p>All simultaneous treatments with 3.5 μM methylmercury produced a reduction in cellular mercury with increased selenium concentration. This was particularly obvious in selenite treatments. Growth curves from the simultaneous 3.5 μM methylmercury and selenite treatments indicated protection with increased selenite concentrations. In both exposure protocols, the 5 μM methylmercury treatments were toxic to the cells. </p><p>In both study protocols, cells exposed to selenite and mercuric chloride manifested increased cellular mercury uptake with increased selenium concentration. In all selenite and 35 μM mercuric chloride treatments, no inhibition of growth was observed, while the 50 μM mercuric chloride treatments were toxic to the cells. Selenite-dependent protection was achieved in both exposure protocols when considering the cellular uptake of mercury. With few exceptions, selenomethionine produced similar effects as selenite on mercuric chloride uptake and growth inhibition.</p>

Page generated in 0.0978 seconds