• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Sobre el teorema del flujo tubular y el teorema de Frobenius

Cutimanco Panduro, Miguel Alfredo January 2007 (has links)
El presente trabajo tiene por objetivo presentar una versión del Teorema del Flujo Tubular que sirva de motivación para introducir objetos geométricos como fibrado tangente, subfibrado tangente, X-foliación, entre otros. Esta presentación resulta ser el caso 1-dimensional del Teorema de Frobenius, lo que nos permitirá ver con claridad qué tipo de problema es el que resuelve dicho teorema, facilitando la comprensión del caso k-dimensional de tan importante teorema. / The objetive of this work is to present a version of the Tubular Flow Theorem that motivates the introduction of geometric objects such as: tan- gent bundle, tangent subbundle, X-foliation, etc. This presentation becomes the 1-dimensional case of the Frobenius Theorem, which will let us see what kind of problem this theorem solves, in order to improve the comprehension of the k-dimensional case of such as important theorem.
2

Sobre el Teorema del Flujo Tubular y el Teorema de Frobenius

Cutimanco Panduro, Miguel Alfredo January 2007 (has links)
El presente trabajo tiene por objetivo presentar una versión del Teorema del Flujo Tubular que sirva de motivación para introducir objetos geométricos como fibrado tangente, subfibrado tangente, X-foliación, entre otros. Esta presentación resulta ser el caso 1-dimensional del Teorema de Frobenius, lo que nos permitirá ver con claridad qué tipo de problema es el que resuelve dicho teorema, facilitando la comprensión del caso k-dimensional de tan importante teorema. / --- The objetive of this work is to present a version of the Tubular Flow Theorem that motivates the introduction of geometric objects such as: tan- gent bundle, tangent subbundle, X-foliation, etc. This presentation becomes the 1-dimensional case of the Frobenius Theorem, which will let us see what kind of problem this theorem solves, in order to improve the comprehension of the k-dimensional case of such as important theorem. / Tesis

Page generated in 0.065 seconds