• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of Field Scenario Ray Tracing Software for the Analysis of Bifacial Photovoltaic Solar Panel Performance

Li, Chu Tu January 2016 (has links)
This thesis is based on a project "Bifacial Photovoltaic Energy Production Analysis" to build a detailed simulation model system accurately simulate bifacial panel performance under real field radiation conditions and deployment configuration, and to predict its corresponding energy yield. To the author’s up-to-date knowledge, the model system is unpreceded among same type simulation software in complexity, details in consideration, ranges of deployment and parameters. The model system can also be used as a platform for more components and variables to be added on, such as adding on more rows of panel arrays to simulate bifacial solar farm scenario; and adding spectral information for more accurate analysis. The system components’ sub-models were carefully chosen based on a broad literature review in related aspects; especially in sky diffuse radiance, ground reflection, and bifacial solar cells. Built in MATLAB© based on mathematical expressions from above said models, the system consists of 5 bifacial panels and their racking as shading objects and the central panel performance is under investigation and has taken consideration of all possible panel azimuth and elevation combinations. Model simplification and resolution are carefully considered so to achieve a good balance in complexity, computation load and output accuracy. Output reliability is confirmed with other people’s work. Furthermore, the model has been fully checked and peer tested. Outputs under different parameter settings are analysed and discussed. Conclusions and recommended future work are provided at the end of the thesis.

Page generated in 0.1182 seconds