Spelling suggestions: "subject:"guignardia bidwillii"" "subject:"guignardia bidwell""
1 |
Dissection of black rot resistance towards marker-assisted breeding in grapevine Pedigree reconstruction and phenotyping optimization coupled with high-density linkage mapping revealed a major QTL associated with bunch resistance.Bettinelli, Paola 05 June 2023 (has links)
Viticulture is a multibillion-dollar market based on grapes, one of the most valuable fruits in agriculture, but it is also characterized by the highest uses of fungicides per hectare for disease management. In fact, despite the availability of genetic resources resistant to the most diffuse fungal pathogens, those cover less than a fifth of the worldwide vine area. The remaining 80% is represented mainly by susceptible Vitis vinifera L. varieties. Instead, re-sistance traits are known to derive from other Vitis species, due to their coevolution with the pathogens, and their exploitation in breeding is a valuable strategy to reduce pesticide treat-ments. Black rot (BR) is a destructive disease caused by the ascomycete, Phyllosticta ampeli-cida, whose telomorphic form was known as Guignardia bidwellii. In the European continental area in the last two decades its pressure increased due to the concomitant decreased usage of chemicals and the occurrence of mild-rainy summer because of the climate change. This work was established to fight the spread of BR by means of the introduction of BR resistance in susceptible genetic background. The study consisted of (i) the reconstruction of BR resistant donor pedigree based on the collection of historical phenotypic data, (ii) the eval-uation of parental lines and selections of the breeding program of the Edmund Mach Founda-tion (Italy), (iii) the microscopic inspection of disease progression, and (iv) QTL analysis of the segregating population (N=146) ‘Merzling’ (hybrid, resistant) × ‘Teroldego’ (V. vinifera, suscep-tible). The outcomes revealed a large unexplored pool of disease resistance donors of 148 va-rieties belonging to 14 different species, that permitted to evaluate and identify five new promising genotypes readily exploited for breeding. Concurrently, a new inoculation method based on spore production from fresh infected leaves was developed. Ex vivo (detached leaves) inoculation did not reveal significant differences among the assessed genotypes and highlight-ed the tendency of spores to accumulate and germinate near leaf hairs, while disease progres-sion did not occur. The screening of the segregating population, both under greenhouse and field conditions, allowed the discrimination on chromosome 14 between two distinct QTLs as-sociated with leaf/shoot and bunch resistance. The first QTL confirmed the Resistance to Gui-gnardia bidwellii (Rgb)1 locus previously identified by three studies and the high-density link-age mapping allowed to reduce it from 2.4 to 0.7 Mb along the PN40024.v4 reference genome. The region resulted enriched in genes belonging to phloem dynamics and mitochondrial pro-ton transfer. The second QTL associated with bunch resistance was designated Rgb3. Located at 9 cM (6 Mb) upstream Rgb1, it was characterized by a cluster of Germin-like protein 3 genes and lipid transfer and localization, notably known to be linked to broad spectrum disease re-sistance and stress response. No resistance (R)-genes have been annotated in the region under-lying the QTL in the PN40024 reference genome. In conclusion, this work provided new insights for grapevine breeding programs by the identification of previously unknown BR resistance donors, the development of protocols and good practices towards large-scale resistance screening as well as the discovery of a novel QTL associated with bunch resistance. Marker validation in different genetic backgrounds is ongoing for its routinary implementation in marker-assisted breeding and further studies are planned to dissect BR resistance mechanism by the sequencing of the genomic regions, the study of the Germin-like 3 gene cluster and the cell wall characterization.
|
2 |
Studi sulle dinamiche dell'inoculo di Guignardia bidwellii, agente causale del marciume nero della vite / STUDIES ON INOCULUM DYNAMICS OF Guignardia bidwellii, CASUAL AGENT OF GRAPE BLACK-ROT / Studies on inoculum dynamics of Guignardia bidwellii, causal agent of grape black-rotONESTI, GIOVANNI 17 March 2016 (has links)
L’ascomicete Guignardia bidwellii, agente causale del marciume nero della vite, è un patogeno economicamente importante in alcuni areali viticoli. La conoscenza, disponibile sul marciume nero dell’uva, è stata recuperata dalla letteratura, analizzata e sintetizzata per sviluppare un modello meccanicistico del ciclo di vita del patogeno, guidata dalle variabili meteorologiche e dalla fenologia della vite, e basata sull'analisi dei sistemi. Il modello è stato poi valutato per la sua capacità di rappresentare il sistema reale e la sua utilità per la comprensione di epidemie di marciume nero su foglie e grappoli in un vigneto del Nord Italia, nel 2013 al 2015. Successivamente, le mancanze di conoscenza sono state analizzate, studiate e quindi colmate attraverso specifici esperimenti. In un primo passo, le dinamiche dell’inoculo primario e dei modelli di dispersione (di entrambi ascospore e conidi) da mummie svernate sono state studiate in un vigneto sperimentale per tre anni. In un secondo passo, l'effetto della temperatura e dell'umidità sulla formazione di picnidi di G. bidwellii e la successiva estrusione di cirri, nelle lesioni su foglia, la produzione e la germinazione dei conidi (inoculo secondario), e la lunghezza del periodo di latenza sono stati studiati sia in condizioni di campo che in ambiente controllato. In un terzo passo, sono stati condotti studi in ambiente controllato per studiare la produzione di conidi di G. bidwellii sulle lesioni di foglie, influenzata da lavaggi ripetuti e alternando periodi di secco ed umido. Il modello epidemiologico sviluppato in questa tesi può essere utilizzata da viticoltori come strumento predittivo per la pianificazione di trattamenti fungicidi nei vigneti. / The ascomycete Guignardia bidwellii, causal agent of black-rot on grapevines, is an economically important pathogen in some viticultural areas. The available knowledge on black-rot of grape was retrieved from literature, analyzed, and synthesized to develop a mechanistic model of the life cycle of the pathogen, driven by weather and vine phenology, and based on the systems analysis. The model was then evaluated for its ability to represent the real system and its usefulness for understanding black-rot epidemics on leaves and bunches in a vineyard of north Italy, in 2013 to 2015. Thereafter, weaknesses in our knowledge were analysed and studied through specific experiments. In a first step, dynamics of primary inoculum and dispersal patterns (both ascospores and conidia) from overwintered grape mummies were investigated in an experimental vineyard during three years. In a second step, the effect of temperature and humidity on the formation of G. bidwellii pycnidia and the extrusion of cirri in grape leaf lesions, production and germination of conidia (secondary inoculum), and the length of the latency period were studied under both environmental and controlled conditions. In a third step, environmental-controlled studies were conducted to investigate the production course of G. bidwellii conidia on grape leaf lesions as influenced by repeated washing events and alternate dry and wet periods. The model developed in this thesis can be used by vinegrowers as a predictive tool for scheduling fungicide sprays in the vineyards.
|
Page generated in 0.0642 seconds