Spelling suggestions: "subject:"gynecological cancers"" "subject:"synecological cancers""
1 |
The Role and Regulation of the Phosphatase PPM1D in Chemoresistant Gynecological CancersAli, Ahmed Y. 24 January 2014 (has links)
Cisplatin (CDDP; cis-diamminedichloroplatinum) resistance presents a major impediment in the treatment of several gynecologic solid tumors, including ovarian and cervical tumors. p53, a critical regulator of cellular apoptosis, is a determinant of CDDP sensitivity. In our study, we have observed that the dysregulation of p53 regulators, checkpoint kinase 1 (Chk1) and protein phosphatase magnesium-dependent 1 (PPM1D), significantly reduced CDDP responsiveness in human cancer cells. Isogenic wt-p53 CDDP-sensitive (OV2008) and -resistant (C13*) cervical cancer cells, and isogenic wt-p53 CDDP-sensitive (A2780s) and p53 mutant resistant (A2780cp) ovarian cancer cells, along with CDDP-resistant ovarian cancer cell lines (OCC-1 and OVCAR-3, mutant p53; SKOV-3, p53 null) were used to elucidate the mechanisms of p53 regulation in human gynecologic cancer cells. We have complemented our study with a xenograft model (A2780s) and a tissue microarray of human ovarian tumors to validate our in vitro observations.
We have demonstrated that CDDP differentially regulated the p53 activator Chk1 in sensitive and resistant cancer cells; it enhances Chk1 activation in sensitive but not resistant cells. This differential regulation also extended to PPM1D, whereby CDDP enhanced PPM1D content in resistant but not sensitive cells. PPM1D knockdown sensitized resistant cells to CDDP, which was associated with up-regulation of Chk1 and p53 activations, while PPM1D over-expression had the opposite effect. We have also shown that CDDP sensitivity in response to PPM1D down-regulation was p53-dependent. Moreover, CDDP promotes PPM1D nuclear localization in resistant cells and nuclear exclusion in sensitive cells and xenograft tumors. Enhanced PPM1D expression in human ovarian tumors is significantly associated with tumor aggression.
Dysregulation of the oncogene Akt has been implicated in a variety of human malignancies, including ovarian cancer. We have demonstrated that Akt regulates PPM1D stability, since activated Akt over-expression in sensitive cells rescued PPM1D from CDDP-induced proteasomal degradation and Akt down-regulation in resistant cells lead to PPM1D de-stabilization and down-regulation. We have shown for the first time that PPM1D is downstream of Akt through which it can modulate CDDP sensitivity in human cancer cells. These findings extend the current knowledge on the molecular basis of CDDP resistance in gynecological cancers and may help in developing effective therapeutic strategies.
|
2 |
The Role and Regulation of the Phosphatase PPM1D in Chemoresistant Gynecological CancersAli, Ahmed Y. January 2014 (has links)
Cisplatin (CDDP; cis-diamminedichloroplatinum) resistance presents a major impediment in the treatment of several gynecologic solid tumors, including ovarian and cervical tumors. p53, a critical regulator of cellular apoptosis, is a determinant of CDDP sensitivity. In our study, we have observed that the dysregulation of p53 regulators, checkpoint kinase 1 (Chk1) and protein phosphatase magnesium-dependent 1 (PPM1D), significantly reduced CDDP responsiveness in human cancer cells. Isogenic wt-p53 CDDP-sensitive (OV2008) and -resistant (C13*) cervical cancer cells, and isogenic wt-p53 CDDP-sensitive (A2780s) and p53 mutant resistant (A2780cp) ovarian cancer cells, along with CDDP-resistant ovarian cancer cell lines (OCC-1 and OVCAR-3, mutant p53; SKOV-3, p53 null) were used to elucidate the mechanisms of p53 regulation in human gynecologic cancer cells. We have complemented our study with a xenograft model (A2780s) and a tissue microarray of human ovarian tumors to validate our in vitro observations.
We have demonstrated that CDDP differentially regulated the p53 activator Chk1 in sensitive and resistant cancer cells; it enhances Chk1 activation in sensitive but not resistant cells. This differential regulation also extended to PPM1D, whereby CDDP enhanced PPM1D content in resistant but not sensitive cells. PPM1D knockdown sensitized resistant cells to CDDP, which was associated with up-regulation of Chk1 and p53 activations, while PPM1D over-expression had the opposite effect. We have also shown that CDDP sensitivity in response to PPM1D down-regulation was p53-dependent. Moreover, CDDP promotes PPM1D nuclear localization in resistant cells and nuclear exclusion in sensitive cells and xenograft tumors. Enhanced PPM1D expression in human ovarian tumors is significantly associated with tumor aggression.
Dysregulation of the oncogene Akt has been implicated in a variety of human malignancies, including ovarian cancer. We have demonstrated that Akt regulates PPM1D stability, since activated Akt over-expression in sensitive cells rescued PPM1D from CDDP-induced proteasomal degradation and Akt down-regulation in resistant cells lead to PPM1D de-stabilization and down-regulation. We have shown for the first time that PPM1D is downstream of Akt through which it can modulate CDDP sensitivity in human cancer cells. These findings extend the current knowledge on the molecular basis of CDDP resistance in gynecological cancers and may help in developing effective therapeutic strategies.
|
Page generated in 0.0803 seconds