1 |
Antinociceptive Effects of H<sub>3</sub> (R-methylhistamine) and GABA <sub>B</sub> (baclofen)-Receptor Ligands in an Orofacial Model of Pain in RatsNowak, Przemysław, Kowalińska-Kania, Magdalena, Nowak, Damian, Kostrzewa, Richard M., Malinowska-Borowska, Jolanta 01 August 2013 (has links)
The present study explored the antinociceptive effects of H3 (R-alpha-methylhistamine) and GABAB (baclofen) receptor ligands in an orofacial model of pain in rats. Orofacial pain was induced by subcutaneous injection of formalin (50 μl, 5 %) in the upper lip region, and the number of jumps and time spent face rubbing was recorded for 40 min. Formalin produced a marked biphasic pain response; first phase, 0-10 min (jumps), and second phase, 15-40 min, (rubbing). Baclofen (50 μg) injected into the rat wiskerpad 5 min before formalin administration suppressed both phases of pain whereas R-alpha-methylhistamine (12.5 μg) abolished the first phase only. Brains were taken immediately after behavioral testing was completed. HPLC/ED analysis showed that 5-hydroxytryptamine (5-HT) turnover was increased in hippocampus, thalamus, and brain stem of all formalin groups, excepting the baclofen group in which the balance of 5-HT metabolism was restored to control values. These findings demonstrate that GABAB receptors represent peripheral targets for analgesia. Consequently, locally administered baclofen may be a useful approach in treating inflammatory trigeminal pain.
|
2 |
Antinociceptive Effects of H<sub>3</sub> (R-methylhistamine) and GABA <sub>B</sub> (baclofen)-Receptor Ligands in an Orofacial Model of Pain in RatsNowak, Przemysław, Kowalińska-Kania, Magdalena, Nowak, Damian, Kostrzewa, Richard M., Malinowska-Borowska, Jolanta 01 August 2013 (has links)
The present study explored the antinociceptive effects of H3 (R-alpha-methylhistamine) and GABAB (baclofen) receptor ligands in an orofacial model of pain in rats. Orofacial pain was induced by subcutaneous injection of formalin (50 μl, 5 %) in the upper lip region, and the number of jumps and time spent face rubbing was recorded for 40 min. Formalin produced a marked biphasic pain response; first phase, 0-10 min (jumps), and second phase, 15-40 min, (rubbing). Baclofen (50 μg) injected into the rat wiskerpad 5 min before formalin administration suppressed both phases of pain whereas R-alpha-methylhistamine (12.5 μg) abolished the first phase only. Brains were taken immediately after behavioral testing was completed. HPLC/ED analysis showed that 5-hydroxytryptamine (5-HT) turnover was increased in hippocampus, thalamus, and brain stem of all formalin groups, excepting the baclofen group in which the balance of 5-HT metabolism was restored to control values. These findings demonstrate that GABAB receptors represent peripheral targets for analgesia. Consequently, locally administered baclofen may be a useful approach in treating inflammatory trigeminal pain.
|
3 |
Histamine H<sub>3</sub> Receptor Ligands Modulate L-Dopa-Evoked Behavioral Responses and L-Dopa-Derived Extracellular Dopamine in Dopamine-Denervated Rat StriatumNowak, Przemyslaw, Bortel, Aleksandra, Dabrowska, Joanna, Biedka, Izabela, Slomian, Grzegorz, Roczniak, Wojciech, Kostrzewa, Richard M., Brus, Ryszard 01 September 2008 (has links)
To explore a recently established association between histaminergic and dopaminergic neuronal phenotypic systems in brain, we determined the effect of the respective histaminergic H3 receptor agonist and antagonist/inverse agonist, imetit and thioperamide, on L-DOPA - derived tissue and extracellular dopamine (DA) and metabolite levels in the striatum of 6-hydroxydopamine (6-OHDA) - lesioned rats (i.e., parkinsonian rats). We also examined the influence of histamine H3 ligands on L-DOPA evoked behavioral responses (locomotor activity, number of rearings, stereotyped behavior and motor coordination). Using HPLC/ED and in vivo microdialysis technique, imetit (5 mg/kg, i.p.) but not thioperamide (5 mg/kg, i.p.) was shown to attenuate an L-DOPA-evoked (15 mg/ kg, i.p.; carbidopa, 30 min pretreatment) increase in extracellular DA in the neostriatum of 6-OHDA-lesioned rats. However, both imetit and thioperamide increased microdialysate levels of DOPAC and HVA, probably by enhancing intraneuronal DA utilization. As indicated by neurochemical analysis of the striatum imetit produced a decrease in tissue DA content. These findings support the hypothesis that central H3 histaminergic receptors have a modulatory role in the storage, metabolism and release of DA derived from exogenous L-DOPA challenge. Furthermore, evidence from behavioral studies indicate that histamine H3 receptor block markedly improved motor coordination. Conversely, histamine H3 receptor stimulation, being without effect on motor coordination, enhanced vertical activity in rats. From the above we conclude that histamine H3 agonism may augment motor dyskinesia in Parkinson's disease (PD) patients and presumably worsen L-DOPA therapy. Consequently, the histaminergic system represents a viable target for modulating the effectiveness of L-DOPA therapy in Parkinson's disease.
|
4 |
H<sub>3</sub> Receptor Agonist- and Antagonist-Evoked Vacuous Chewing Movements in 6-OHDA-Lesioned Rats Occurs in an Absence of Change in Microdialysate Dopamine LevelsNowak, Przemysław, Dabrowska, Joanna, Bortel, Aleksandra, Biedka, Izabela, Szczerbak, Grazyna, Słomian, Grzegorz, Kostrzewa, Richard M., Brus, Ryszard 15 December 2006 (has links)
In rats lesioned neonatally with 6-hydroxydopamine (6-OHDA), repeated treatment with SKF 38393 (1-phenyl-2,3,4,5-tetrahydro-(1H)-3-benzazepine-7,8-diol), a dopamine D1/D5 receptor agonist, produces robust stereotyped and locomotor activities. The gradual induction of dopamine D1 receptor supersensitivity is known as a priming phenomenon, and this process is thought to underlie not only the appearance of vacuous chewing movements in humans with tardive dyskinesia, but also the onset of motor dyskinesias in l-dihydroxyphenylalanine (l-DOPA)-treated Parkinson's disease patients. The object of the present study was to determine the possible influence of the histaminergic system on dopamine D1 agonist-induced activities. We found that neither imetit (5.0 mg/kg i.p.), a histamine H3 receptor agonist, nor thioperamide (5.0 mg/kg i.p.), a histamine H3 receptor antagonist/inverse agonist, altered the numbers of vacuous chewing movements in non-primed-lesioned rats. However, in dopamine D1 agonist-primed rats, thioperamide alone produced a vacuous chewing movements response (i.e., P < 0.05 vs SKF 38393, 1.0 mg/kg i.p.), but did not modify the SKF 38393 effect. Notably, both imetit and thioperamide-induced catalepsy in both non-primed and primed 6-OHDA-lesioned rats, comparable in magnitude to the effect of the dopamine D1/D5 receptor antagonist SCH 23390 (7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine; 0.5 mg/kg i.p.). Furthermore, in primed animals both imetit and thioperamide intensified SCH 23390-evoked catalepsy. In vivo microdialysis established that neither imetit nor thioperamide altered extraneuronal levels of dopamine and its metabolites in the striatum of 6-OHDA-lesioned rats. On the basis of the present study, we believe that histaminergic systems may augment dyskinesias induced by dopamine receptor agonists, independent of direct actions on dopaminergic neurons.
|
Page generated in 0.0414 seconds