• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Upregulation of Vascular Endothelial Growth Factor by H<sub>2</sub>O<sub>2</sub> in Rat Heart Endothelial Cells

Chua, Chu Chang, Hamdy, Ronald C., Chua, Balvin H.L. 15 November 1998 (has links)
Hydrogen peroxide (H2O2) is a reactive oxygen species generated by several metabolic pathways in mammalian cells. Endothelial cells are extremely susceptible to oxidative stress. H2O2 has been reported to increase the permeability in these cells. Using rat heart endothelial cell culture as a model system, we examined the effect of H2O2 on the gene expression of vascular endothelial growth factor (VEGF), a potent mitogen of endothelial cells and a vascular permeability factor. By Northern blot analysis we found that VEGF mRNA responded to H2O2 in a dose-and time- dependent manner. The induction was superinduced by cycloheximide and blocked by actinomycin D. N-Acetylcysteine, a synthetic antioxidant, was able to suppress the induction. H7, a protein kinase C inhibitor, could also block the induction. Electrophoretic mobility shift assay revealed an enhanced binding of transcription factors, AP-1 and NF-κB. Immunoblot analysis showed that the amount of secreted VEGF was elevated in the medium 4 h after H2O2 stimulation. Our results demonstrate that VEGF gene expression is upregulated by H2O2 in these endothelial cells.

Page generated in 0.025 seconds