• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 3
  • 2
  • 2
  • Tagged with
  • 27
  • 27
  • 8
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Impact of Histone Deacetylase Inhibitors on the HPV-16 Transcriptional Activity and Genomic Integration

Bojilova Dimitrova, Ekaterina 30 April 2019 (has links) (PDF)
SUMMARYHuman papillomaviruses (HPV) are small, non-enveloped viruses with a dsDNA genome. About 40 HPV types infect the mucosa and skin of the anogenital tract, and they are further subdivided into low-risk HPV (LR-HPV) and high-risk HPV (HR-HPV). Long-term, persistent infections with the latter type could result in the development of cervical cancer. Cervical cancer is the second most prevalent cancer worldwide, and the third leading cause of cancer-related deaths in women. HR-HPV DNA is frequently found integrated in cervical carcinoma tissue. Thus, HR-HPV integration is considered to be mechanistically linked to virus-promoted malignancy. Several complex and sometimes inter-linked signal transduction pathways, collectively termed as the DNA Damage Response (DDR), act to sense damage incurred to DNA and ultimately promote its repair. The central players of the DDR are three proteins of the phosphatidylinositol 3-kinase-like protein kinase (PIKK) family, ataxia telangiectasia mutated (ATM), ataxia telangiectasia and Rad3-related (ATR) and DNA protein kinase catalytic subunit (DNA-PKcs). Also crucial to the DDR are members of the poly(ADP)ribose polymerase family (PARP). Interactions between histones modified by PARP enzymes, the PARP enzymes themselves and the X-ray repair cross-complementing protein (XRCC-1), are important for efficient DNA repair. Reversible acetylation of histones plays a key role in the regulation of gene expression and in the DDR. The acetylation of histones, as well as that of numerous other cellular proteins, is carried out by histone acetyl transferases (HAT). This enzymatic process exists in a tightly-regulated equilibrium with lysine deacetylation, which is catalyzed by histone deacetylases (HDAC). HDAC modulate the expression and/or function of key proteins implicated in cancer. In addition, many HDAC are overexpressed in most cancers. Various small-molecule inhibitors of HDAC have been developed. HDAC inhibitors (HDACi) have been shown to promote cancer cell cycle arrest, differentiation and apoptosis. In addition, HDACi are well-documented for their synergistic or additive effects on DNA-damaging agents used in cancer therapy. In spite of a growing body of research however, the cellular and molecular mechanisms behind this phenomenon have not yet been fully uncovered. We evaluated the impact of several pan-HDACi and HDACi analogues on the extrachromosomal and genomically-integrated HPV-16 LCR-driven transcription in various cell lines. Using a classical reporter construct strategy, we report that the pan-HDACi Trichostatin A (TSA), valproate (VPA) and sodium butyrate (NaB) are potent inducers of transcription from the HPV-16 long control region (LCR) in its extrachromosomal form. This effect of HDACi was at least in part mediated by three binding sites of members of the AP-1 family of transcription factors within the viral LCR. HDACi analogues 1 through 6 did not modulate extrachromosomal HPV-16 LCR transcription in a statistically-significant way. / Doctorat en Sciences biomédicales et pharmaceutiques (Pharmacie) / info:eu-repo/semantics/nonPublished
2

Design, Synthesis, and Biological Evaluation of Novel Histone Deacetylase Inhibitors as Anti-Cancer Agents

Al-Hamashi, Ayad Abed Ali Chiad A. January 2018 (has links)
No description available.
3

The histone deacetylase inhibitor panobinostat as a radiosensitiser in bladder cancer

Groselj, Blaz January 2014 (has links)
Muscle invasive bladder cancer (MIBC) has a poor prognosis. Currently, therapy consists of radical radiotherapy or cystectomy with or without chemotherapy. The average age of patients with MIBC is high and older patients are less able to tolerate surgery or chemoradiation due to their impaired physical fitness and generally poor renal function. There is an urgent need to find new treatment regimes that are both tolerable and effective. The aims of this project were to investigate the radiosensitising effects of the histone deacetylase (HDAC) inhibitor panobinostat in bladder cancer cell lines, with the ultimate goal of proposing a novel radiosensitising therapy for MIBC, and to study the effects of panobinostat on the major DNA double strand break (DSB) repair pathways, homologous recombination (HR) and non-homologous end joining (NHEJ), to determine the predominant pathway targeted and to look further upstream at effects on the MRE11/RAD50/NBS1 (MRN) complex. The HDAC inhibitor panobinostat was found to be toxic in the low nanomolar range and significant radiosensitising effects were demonstrated at doses lower than IC50 in all the bladder cell lines studied. The radiosensitising effect of panobinostat was not influenced by TP53 status, which is generally regarded as an important determinant of bladder cancer response to radiotherapy. In the “synthetic lethality” bladder cancer cell model, panobinostat predominantly targets the HR pathway, reportedly the only proficient DNA repair pathway in MIBC. HR proteins RAD51 and CtIP were downregulated upon panobinostat treatment in a dose-dependent manner. Upstream, MRE11 and NBS1 proteins were also targeted by panobinostat, with levels slightly decreased in RT112 and T24 cells and in CAL29 cells post-ionising radiation. In summary, the HDAC inhibitor panobinostat was shown to be an efficient radiosensitiser in bladder cancer cells at low toxic doses and to predominantly target the HR pathway. These findings are promising and may contribute towards establishing a novel combination therapy of panobinostat with IR for MIBC patients.
4

Improving histone deacetylase inhibition therapy through isoform selectivity and targeted delivery

Sodji, Quaovi Hemeka 08 June 2015 (has links)
Histone deacetylase (HDAC) inhibition has recently emerged as a novel therapy for cancer treatment. However, currently approved histone deacetylase inhibitors (HDACi) are pan-inhibitors thus inhibiting all 11 zinc dependent HDAC isoforms including those not involved in tumorigenesis. These inhibitors are also associated with various side effects including a potentially fatal cardiotoxicity. To address these issues, isoform selective HDACi were designed and synthesized. The use of 3-hydroxy-pyridin-2-thione (3HPT) as zinc chelation group resulted in small molecules devoid of HDAC1 inhibition but active against HDAC6 and/or 8. Selected 3HPT containing HDACi displayed anticancer activity against various cancer cell lines including DU145, LNCaP and Jurkat. Surprisingly, the lead-compounds were very potent against Jurkat Jγ cells which are resistant to SAHA-induced apoptosis. HDACi were also targeted to cancer cells using folic or pteroic acids as targeting groups. Incorporation of the folic acid into the HDACi pharmacophoric model resulted in inhibitors selective for HDAC6, whereas pteroic-based HDACi inhibited both HDAC1 and 6. Only the pteroic-based inhibitors displayed anticancer activities against folate receptor overexpressing tumors such KB and HeLa. Furthermore, cell-based studies established the inhibition of HDAC1 as the basis for the anticancer activities of the pteroic-based HDACi.
5

Inibidor de histona deacetilase (HDACi) como possível radiosensibilizante em linhagens celulares de glioblastoma pediátrico / Histone inhibitor as a putative radiosensitizer in pediatric glioblastoma cell lines

Andrade, Pamela Viani de 18 June 2015 (has links)
O glioblastoma (GBM) é considerado um dos tumores mais agressivos do sistema nervoso central (SNC). Mesmo com o uso de protocolos modernos de tratamento o prognóstico se mantém bastante reservado, sendo que crianças com GBM apresentam uma sobrevida média de 12 a 15 meses. Mecanismos epigenéticos podem interferir no processo de carcinogênese, sendo que a acetilação do DNA pode modular a expressão de genes que atuam no controle do ciclo celular, contribuindo assim para o desenvolvimento e progressão de neoplasias. Estudos clínicos demonstram que inibidores de histonas deacetilases (HDACs), em monoterapia ou combinados a outros agentes antineoplásicos, são clinicamente ativos e bem tolerados no tratamento de uma ampla variedade de tumores. Estes inibidores podem sensibilizar a resposta celular à irradiação ionizante, possibilitando uma redução nas doses-padrão utilizadas, minimizando os efeitos colaterais a curto e longo prazo. A radiação ionizante induz dano no DNA e é geralmente aceito que quebras da dupla-fita (DSBs) é o tipo de lesão mais severa relacionada à sobrevivência celular e preservação da integridade genômica. No presente estudo, avaliamos o potencial efeito radiosensibilizante do PCI-24781, um novo e potente pan-inibidor de HDAC nas linhagens celulares de GBM pediátrico SF188 e KNS42. Foram comparadas as taxas de proliferação celular, clonogenicidade e apoptose das linhagens SF188 e KNS42 com ou sem tratamento com PCI-24781. Também foram comparadas as taxas de clonogenicidade das linhagens SF188 e KNS42 que foram irradiadas com ou sem tratamento prévio com PCI-24781. Adicionalmente, foram avaliados os efeitos do PCI-24781 na expressão de algumas das principais proteínas responsáveis pelo reparo de quebras da dupla-fita ocasionadas pela irradiação. Para os ensaios de proliferação celular foram utilizados os tempo de 24, 48, 72 e 96h, para apoptose, 48h e para capacidade clonogênica sem irradiação o tempo de 48h, em diferentes doses de PCI-24781 (0,25 - 16 M). O inibidor bloqueou significativamente a proliferação celular (p<0,05), induziu morte por apoptose (p<0,05) e reduziu a capacidade na formação de colônias (p<0,001) em ambas as linhagens. No ensaio para avaliação da radiosensibilidade, foram utilizadas as doses do IC30 11 de cada linhagem do ensaio clonogênico seguida de diferentes doses de irradiação. Ambas as linhagens apresentaram uma significativa (p<0,001) diminuição na formação de colônias em todas as doses de irradiação. A linhagem mais resistente à droga, SF188 foi escolhida para estudo do reparo de quebras da dupla-fita ocasionadas pela irradiação. As expressões da proteína Rad51, importante na via de reparo por recombinação homóloga (HR), e das proteínas DNA-PKcs, Ku70 e Ku86, importantes na via de reparo por união terminal não-homóloga (NHEJ) apresentaram uma maior diminuição quando a linhagem irradiada foi previamente tratada com PCI-24781 em comparação à radioterapia exclusiva. Estes achados demonstram que o inibidor de histona PCI-24781 apresenta um importante papel como agente radiosensibilizante, comprometendo o reparo das quebras de dupla-fita em células de GBM pediátrico tratadas com radioterapia. / Glioblastoma (GBM) is considered one of the most aggressive tumors to affect the central nervous system (CNS). Even employing modern treatment protocols the prognosis remains very poor, with children affected by GBM presenting a median survival rate of 12 to 15 months. Epigenetic mechanisms may interfere with the process of tumorigenesis, and DNA acetylation can modulate the expression of genes that contribute in cell cycle control and participate to the development and progression of cancer. Clinical studies demonstrate that histone deacetylase inhibitors (HDACs), alone or in combination with other antineoplastic agents, are clinically active and well tolerated in the treatment of a wide variety of tumors. These inhibitors may sensitize the cellular response to ionizing radiation, enabling the reduction in standard doses of radiation, ultimately minimizing both short and long-term side effects. Ionizing radiation induces DNA damage and it is generally accepted that the double-stranded breaks (DSBs) is the most severe type of injury related to cell survival and preservation of genomic integrity. In the present study, we evaluated the potential radiosensitizer effect of PCI-24781, a novel potent pan-HDAC inhibitor in the pediatric GBM cell lines SF188 and KNS42. We compared the cell proliferation rates, apoptosis of clonogenicity of KNS42 and SF188, with or without treatment with PCI-24781. Moreover, clonogenicity rates were compared between cell lines that were irradiated with or without prior treatment with PCI-24781 Additionally, we evaluated the effects of PCI-24781 in the expression of some of the major proteins responsible for the repair of double-stranded breaks caused by the irradiation. For the cell proliferation assays, the times of 24, 48, 72 and 96 hours were used, for apoptosis, the time of 48h and clonogenic capacity without irradiation, the time of 48h, and different doses of PCI-24781 (0,25 - 16 M). The inhibitor significantly blocked cell proliferation (p<0,05), inducing cell death by apoptosis (p<0,05) and reducing the colony forming ability (p<0,001) of both lineages. In the assays to evaluate the radiosensitivity , the IC30 doses of the clonogenic assays were used for each cell-line after different doses of irradiation. Both lineages showed a significant decrease (p<0,001) in colony formation at all doses of irradiation. The most resistant cell-line to the drug, SF188, was 13 chosen to study the double-strand breaks repair caused by irradiation. The Rad51 protein levels, critical for homologous recombination (HR), and the DNA-PKcs proteins Ku70 and Ku86, important for DNA repair through non-homologous end joining (NHEJ) showed significant decrease in expression when cell-line was treated with PCI-24781 prior to radiotherapy. These data demonstrates that the histone deacetylase inhibitor PCI-24781 plays an important role as a radiosensitizer agent, compromising the repair of double-strand breaks in pediatric GBM cells following irradiation.
6

Inibidor de histona deacetilase (HDACi) como possível radiosensibilizante em linhagens celulares de glioblastoma pediátrico / Histone inhibitor as a putative radiosensitizer in pediatric glioblastoma cell lines

Pamela Viani de Andrade 18 June 2015 (has links)
O glioblastoma (GBM) é considerado um dos tumores mais agressivos do sistema nervoso central (SNC). Mesmo com o uso de protocolos modernos de tratamento o prognóstico se mantém bastante reservado, sendo que crianças com GBM apresentam uma sobrevida média de 12 a 15 meses. Mecanismos epigenéticos podem interferir no processo de carcinogênese, sendo que a acetilação do DNA pode modular a expressão de genes que atuam no controle do ciclo celular, contribuindo assim para o desenvolvimento e progressão de neoplasias. Estudos clínicos demonstram que inibidores de histonas deacetilases (HDACs), em monoterapia ou combinados a outros agentes antineoplásicos, são clinicamente ativos e bem tolerados no tratamento de uma ampla variedade de tumores. Estes inibidores podem sensibilizar a resposta celular à irradiação ionizante, possibilitando uma redução nas doses-padrão utilizadas, minimizando os efeitos colaterais a curto e longo prazo. A radiação ionizante induz dano no DNA e é geralmente aceito que quebras da dupla-fita (DSBs) é o tipo de lesão mais severa relacionada à sobrevivência celular e preservação da integridade genômica. No presente estudo, avaliamos o potencial efeito radiosensibilizante do PCI-24781, um novo e potente pan-inibidor de HDAC nas linhagens celulares de GBM pediátrico SF188 e KNS42. Foram comparadas as taxas de proliferação celular, clonogenicidade e apoptose das linhagens SF188 e KNS42 com ou sem tratamento com PCI-24781. Também foram comparadas as taxas de clonogenicidade das linhagens SF188 e KNS42 que foram irradiadas com ou sem tratamento prévio com PCI-24781. Adicionalmente, foram avaliados os efeitos do PCI-24781 na expressão de algumas das principais proteínas responsáveis pelo reparo de quebras da dupla-fita ocasionadas pela irradiação. Para os ensaios de proliferação celular foram utilizados os tempo de 24, 48, 72 e 96h, para apoptose, 48h e para capacidade clonogênica sem irradiação o tempo de 48h, em diferentes doses de PCI-24781 (0,25 - 16 M). O inibidor bloqueou significativamente a proliferação celular (p<0,05), induziu morte por apoptose (p<0,05) e reduziu a capacidade na formação de colônias (p<0,001) em ambas as linhagens. No ensaio para avaliação da radiosensibilidade, foram utilizadas as doses do IC30 11 de cada linhagem do ensaio clonogênico seguida de diferentes doses de irradiação. Ambas as linhagens apresentaram uma significativa (p<0,001) diminuição na formação de colônias em todas as doses de irradiação. A linhagem mais resistente à droga, SF188 foi escolhida para estudo do reparo de quebras da dupla-fita ocasionadas pela irradiação. As expressões da proteína Rad51, importante na via de reparo por recombinação homóloga (HR), e das proteínas DNA-PKcs, Ku70 e Ku86, importantes na via de reparo por união terminal não-homóloga (NHEJ) apresentaram uma maior diminuição quando a linhagem irradiada foi previamente tratada com PCI-24781 em comparação à radioterapia exclusiva. Estes achados demonstram que o inibidor de histona PCI-24781 apresenta um importante papel como agente radiosensibilizante, comprometendo o reparo das quebras de dupla-fita em células de GBM pediátrico tratadas com radioterapia. / Glioblastoma (GBM) is considered one of the most aggressive tumors to affect the central nervous system (CNS). Even employing modern treatment protocols the prognosis remains very poor, with children affected by GBM presenting a median survival rate of 12 to 15 months. Epigenetic mechanisms may interfere with the process of tumorigenesis, and DNA acetylation can modulate the expression of genes that contribute in cell cycle control and participate to the development and progression of cancer. Clinical studies demonstrate that histone deacetylase inhibitors (HDACs), alone or in combination with other antineoplastic agents, are clinically active and well tolerated in the treatment of a wide variety of tumors. These inhibitors may sensitize the cellular response to ionizing radiation, enabling the reduction in standard doses of radiation, ultimately minimizing both short and long-term side effects. Ionizing radiation induces DNA damage and it is generally accepted that the double-stranded breaks (DSBs) is the most severe type of injury related to cell survival and preservation of genomic integrity. In the present study, we evaluated the potential radiosensitizer effect of PCI-24781, a novel potent pan-HDAC inhibitor in the pediatric GBM cell lines SF188 and KNS42. We compared the cell proliferation rates, apoptosis of clonogenicity of KNS42 and SF188, with or without treatment with PCI-24781. Moreover, clonogenicity rates were compared between cell lines that were irradiated with or without prior treatment with PCI-24781 Additionally, we evaluated the effects of PCI-24781 in the expression of some of the major proteins responsible for the repair of double-stranded breaks caused by the irradiation. For the cell proliferation assays, the times of 24, 48, 72 and 96 hours were used, for apoptosis, the time of 48h and clonogenic capacity without irradiation, the time of 48h, and different doses of PCI-24781 (0,25 - 16 M). The inhibitor significantly blocked cell proliferation (p<0,05), inducing cell death by apoptosis (p<0,05) and reducing the colony forming ability (p<0,001) of both lineages. In the assays to evaluate the radiosensitivity , the IC30 doses of the clonogenic assays were used for each cell-line after different doses of irradiation. Both lineages showed a significant decrease (p<0,001) in colony formation at all doses of irradiation. The most resistant cell-line to the drug, SF188, was 13 chosen to study the double-strand breaks repair caused by irradiation. The Rad51 protein levels, critical for homologous recombination (HR), and the DNA-PKcs proteins Ku70 and Ku86, important for DNA repair through non-homologous end joining (NHEJ) showed significant decrease in expression when cell-line was treated with PCI-24781 prior to radiotherapy. These data demonstrates that the histone deacetylase inhibitor PCI-24781 plays an important role as a radiosensitizer agent, compromising the repair of double-strand breaks in pediatric GBM cells following irradiation.
7

Synthesis Of Novel Chiral Thiourea Derivatives And Their Applications, Synthesis Of Some Hdac Inhibitors, Addition Of Acyl Phosphonates To Ethylcyanoformate

Saglam, Guluzar 01 January 2008 (has links) (PDF)
The thiourea derivatives have become a main focus of research in asymmetric synthesis as an organocatalyst in recent years. In the first part, the thiourea catalysts are synthesized starting from easily available L-tartaric acid and application of the catalysts to some addition reactions showed no significant asymmetric induction. A number of HDAC inhibitors have been developed as anti-cancer agent at the present time.In the second part, some aryl butenoic acid derivatives are synthesized as HDAC inhibitors starting from substituted benzaldehyde and pyruvic acid. The HDAC activity studies showed comparable results with known molecules. In the last part, some acyl phosphonates are synthesized and addition of ethylcyanoformate to acyl phosphonates furnished the products in good yields.
8

Role of histone deacetylases in gene expression and RNA splicing

Khan, Dilshad Hussain 23 April 2013 (has links)
Histone deacetylases (HDAC) 1 and 2 play crucial role in chromatin remodeling and gene expression regimes, as part of multiprotein corepressor complexes. Protein kinase CK2-driven phosphorylation of HDAC1 and 2 regulates their catalytic activities and is required to form the corepressor complexes. Phosphorylation-mediated differential distributions of HDAC1 and 2 complexes in regulatory and coding regions of transcribed genes catalyze the dynamic protein acetylation of histones and other proteins, thereby influence gene expression. During mitosis, highly phosphorylated HDAC1 and 2 heterodimers dissociate and displace from mitotic chromosomes. Our goal was to identify the kinase involved in mitotic phosphorylation of HDAC1 and 2. We postulated that CK2-mediated increased phosphorylation of HDAC1 and 2 leads to dissociation of the heterodimers, and, the mitotic chromosomal exclusions of HDAC1 and 2 are largely due to the displacement of HDAC-associated proteins and transcription factors, which recruit HDACs, from chromosomes during mitosis. We further explored the role of un- or monomodified HDAC1 and 2 complexes in immediate-early genes (IEGs), FOSL1 (FOS-like antigen-1) and MCL1 (Myeloid cell leukemia-1), regulation. Dynamic histone acetylation is an important regulator of these genes that are overexpressed in a number of diseases and cancers. We hypothesized that transcription dependent recruitment of HDAC1 and 2 complexes over the gene body regions plays a regulatory role in transcription and splicing regulation of these genes. We present evidence that CK2-catalyzed increased phosphorylation of HDAC1 and 2 regulates the formation of distinct corepressor complexes containing either HDAC1 or HDAC2 homodimers during mitosis, which might target cellular factors. Furthermore, the exclusion of HDAC-recruiting proteins is the major factor for their displacement from mitotic chromosomes. We further demonstrated that un- or monophosphorylated HDAC1 and 2 are associated with gene body of FOSL1 in a transcription dependent manner. However, HDAC inhibitors prevented FOSL1 activation independently of the nucleosome response pathway, which is required for IEG induction. Interestingly, our mass spectrometry results revealed that HDAC1 and 2 interact with a number of splicing proteins, in particular, with serine/arginine-rich splicing factor 1 (SRSF1). HDAC1 and 2 are co-occupied with SRSF1 over gene body regions of FOSL1 and MCL1, regardless of underlying splicing mechanisms. Using siRNA-mediated knockdown approaches and HDAC inhibitors, we demonstrated that alternative splicing of MCL1 is regulated by RNA-directed localized changes in the histone acetylation levels at the alternative exon. The change in histone acetylation levels correlates with the increased transcription elongation and results in change in MCL1 splicing by exon skipping mechanism. Taken together, our results contribute to further understanding of how the multi-faceted HDAC1 and 2 complexes can be regulated and function in various processes, including, but not limited to, transcription regulation and alternative splicing. This can be an exciting area of future research for therapeutic interventions.
9

Role of endogenous retrovirus promoter activity in tumor suppression

Krönung, Sonja Katharina 27 April 2015 (has links)
No description available.
10

Role of histone deacetylases in gene expression and RNA splicing

Khan, Dilshad Hussain 23 April 2013 (has links)
Histone deacetylases (HDAC) 1 and 2 play crucial role in chromatin remodeling and gene expression regimes, as part of multiprotein corepressor complexes. Protein kinase CK2-driven phosphorylation of HDAC1 and 2 regulates their catalytic activities and is required to form the corepressor complexes. Phosphorylation-mediated differential distributions of HDAC1 and 2 complexes in regulatory and coding regions of transcribed genes catalyze the dynamic protein acetylation of histones and other proteins, thereby influence gene expression. During mitosis, highly phosphorylated HDAC1 and 2 heterodimers dissociate and displace from mitotic chromosomes. Our goal was to identify the kinase involved in mitotic phosphorylation of HDAC1 and 2. We postulated that CK2-mediated increased phosphorylation of HDAC1 and 2 leads to dissociation of the heterodimers, and, the mitotic chromosomal exclusions of HDAC1 and 2 are largely due to the displacement of HDAC-associated proteins and transcription factors, which recruit HDACs, from chromosomes during mitosis. We further explored the role of un- or monomodified HDAC1 and 2 complexes in immediate-early genes (IEGs), FOSL1 (FOS-like antigen-1) and MCL1 (Myeloid cell leukemia-1), regulation. Dynamic histone acetylation is an important regulator of these genes that are overexpressed in a number of diseases and cancers. We hypothesized that transcription dependent recruitment of HDAC1 and 2 complexes over the gene body regions plays a regulatory role in transcription and splicing regulation of these genes. We present evidence that CK2-catalyzed increased phosphorylation of HDAC1 and 2 regulates the formation of distinct corepressor complexes containing either HDAC1 or HDAC2 homodimers during mitosis, which might target cellular factors. Furthermore, the exclusion of HDAC-recruiting proteins is the major factor for their displacement from mitotic chromosomes. We further demonstrated that un- or monophosphorylated HDAC1 and 2 are associated with gene body of FOSL1 in a transcription dependent manner. However, HDAC inhibitors prevented FOSL1 activation independently of the nucleosome response pathway, which is required for IEG induction. Interestingly, our mass spectrometry results revealed that HDAC1 and 2 interact with a number of splicing proteins, in particular, with serine/arginine-rich splicing factor 1 (SRSF1). HDAC1 and 2 are co-occupied with SRSF1 over gene body regions of FOSL1 and MCL1, regardless of underlying splicing mechanisms. Using siRNA-mediated knockdown approaches and HDAC inhibitors, we demonstrated that alternative splicing of MCL1 is regulated by RNA-directed localized changes in the histone acetylation levels at the alternative exon. The change in histone acetylation levels correlates with the increased transcription elongation and results in change in MCL1 splicing by exon skipping mechanism. Taken together, our results contribute to further understanding of how the multi-faceted HDAC1 and 2 complexes can be regulated and function in various processes, including, but not limited to, transcription regulation and alternative splicing. This can be an exciting area of future research for therapeutic interventions.

Page generated in 0.0636 seconds