• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 5
  • 4
  • 1
  • 1
  • 1
  • Tagged with
  • 19
  • 19
  • 7
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

MiR-9-5p Down-Regulates PiT2, but Not PiT1 in Human Embryonic Kidney 293 Cells

Paiva, D. P., Keasey, M., Oliveira, J. R.M. 01 May 2017 (has links)
Inorganic phosphate (Pi) is an essential component for structure and metabolism. PiT1 (SLC20A1) and PiT2 (SLC20A2) are members of the mammalian type-III inorganic phosphate transporters. SLC20A2 missense variants are associated with primary brain calcification. MicroRNAs (miRNAs) are endogenous noncoding regulatory RNAs, which play important roles in post-transcriptional gene regulation. MicroRNA-9 (miR-9) acts at different stages of neurogenesis, is deeply rooted in gene networks controlling the regulation of neural progenitor proliferation, and is also linked with cancers outside the nervous system. We evaluated possible interactions between miR-9 and the phosphate transporters (PiT1 and PiT2). SLC20A2, platelet-derived growth factor receptor beta (PDGFRB) and Fibrillin-2 (FBN2) showed binding sites with high affinity for mir-9, in silico. miR-9 mimic was transfected into HEK293 cells and expression confirmed by RT-qPCR. Overexpression of miR-9 in these cells caused a significant reduction in PiT2 and FBN2. PDGFRB appeared to be decreased, but was not significantly down-regulated in our hands. PiT1 showed no significant difference relative to controls. The down-regulation of PiT2 protein by miR-9 was confirmed by western blotting. In conclusion, we showed miR-9 can down-regulate PiT2, in HEK293 cells.
2

The use of comparative genomics to investigate mechanisms of cadmium induced transcription

Tvermoes, Brooke Erin January 2009 (has links)
<p>Cadmium is a human carcinogen and a persistent environmental pollutant of increasing concern. Yet, the exact molecular targets of cadmium toxicity and the molecular mechanisms by which cadmium influences gene expression have not been fully elucidated. Therefore, the characterization of cadmium-inducible genes will provide a better understanding of the underlying mechanism involved in sensing cadmium-stress and the subsequent signaling pathways important for cellular defense against cadmium toxicity. To this end, we characterized two cadmium-responsive genes of no known biological function from the nematode Caenorhabditis elegans (C. elegans), numr-1 and numr-2.</p><p>Expression analysis of numr-1 and numr-2 revealed the same temporal and spatial expression patterns of both genes in the absence and presence of metal treatment. In the absence of metal, constitutive expression of numr-1/-2 was developmentally regulated. When adult animals were exposed to metal, numr-1/-2 expression dramatically increased. We show that worms overexpressing numr-1/-2 were more resistant to metal stress and longer lived than control animals; whereas reducing numr-1/-2 activity resulted in increased sensitivity to metal exposure. Furthermore, in the absence of metal, the two numr-1 mutant alleles, tm2775 and ok2239, exhibited decreased muscular functions. The molecular characterization of numr-1 and numr-2 also revealed that the expression of these two genes, at least in part, was regulated by changes in intracellular calcium concentrations ([Ca2+]i). This finding lead us to reevaluate the role of calcium mobilization in cadmium-induced transcription. </p><p>While several studies have indicated that exposure to cadmium resulted in increased [Ca2+]i, the mechanism by which cadmium can effect [Ca2+]i and concurrent effects on gene expression remain poorly understood. Therefore, we investigated the effects of low-level cadmium exposure, sufficient to induce transcription of cadmium-responsive genes, on the regulation of [Ca2+]i. In these studies, we utilized the protein-based calcium sensor YC 3.60 stably expressed in a HEK293 cell line. YC 3.60 is insensitive to cadmium ions, and thus is useful to monitor changes in [Ca2+]i following cadmium treatment. Exposing HEK293 cells to 1-30 µM cadmium was sufficient to induce transcription of cadmium-responsive genes such as metallothionein. Cadmium exposure from 1-10 µM had no effect on cell viability, [Ca2+]i mobilization, or increased transcriptional activity of calcium-responsive genes. In contrast, exposure to 30 µM cadmium significantly decreased cell viability, reduced intracellular calcium stores, and significantly altered the transcriptional activity of calcium-responsive genes. Taken together, these data indicate that low-level cadmium exposures (1-10 µM) can induce transcription of cadmium-responsive genes such as metallothionein independent of [Ca2+]i mobilization. </p><p>To gain further insight into the mechanistic relationship between cadmium and calcium we investigated the effects of cadmium exposure on the defecation cycle of C. elegans. Defecation is a highly rhythmic behavior that is regulated by calcium oscillations. We found that low-level cadmium exposures, sufficient to induce expression of cadmium-responsive genes such as numr-1/-2, significantly shortened the defecation cycle but did not alter the rhythm of the cycle or the magnitude of the intestinal calcium oscillations. Modulation of lipid metabolism in C. elegans results in a similar shortened defecation cycle, whereas modulation of [Ca2+]i results in lengthened and arrhythmic defection cycles, suggesting that the mechanism by which cadmium alters defecation is independent of [Ca2+]i mobilization.</p><p>In summary, the data in this work demonstrates that low-level cadmium exposure induces expression of cadmium-responsive genes independent of calcium mobilization. Thus, modulation of intracellular calcium is unlikely the primary mechanism by which cadmium regulates transcription at low-levels of exposure.</p> / Dissertation
3

Úloha deseti ektodoménových cysteinových zbytků ve funkci P2X4 receptoru stimulovaného ATP / Contribution of ten ectodomain cysteine residues to function of ATP-gated P2X4 receptor

Tvrdoňová, Vendula January 2010 (has links)
Extracellular adenosine-5'-triphosphate (ATP), released from damaged cells or coreleased as a cotransmitter from synaptic vesicles, acts on its plasma membrane receptors termed purinergic. Purinergic P2X receptors are ATP-gated cation channels. To date seven P2X isoforms designated P2X1-7 have been cloned that are organized as trimeric homomers or heteromers. All P2X subunits share a similar structure consisting of a large extracellular loop, two transmembrane domains and intracellular N- and C- termini. An additional structural feature is conserved aminoacids, these include ten conserved cysteine residues in the extracellular loop. All ectodomain cysteines form disulfide bonds which are organized in two areas: three disulfide bridges are localized in the N-termini half and two in the C-termini half at P2X receptor. ATP binding pocket is apparently localized between two neighbouring subunits. The aim of this Diploma Thesis was to examine the relevance of ectodomain cysteine residue and/or disulfide bonds for the expression, function and ATP binding properties of the P2X receptor. All ten, one by one, ectodomain cysteines were substituted by alanines and ATP-induced currents was recorded in HEK293 cells expressing wild-type P2X4 receptor and its mutants. Low responsible or nonfunctional mutants...
4

Inhibition of T-type Ca2+ channels by hydrogen sulfide

Elies, Jacobo, Scragg, J.L., Dallas, M.L., Huang, D., Huang, S., Boyle, J.P., Gamper, N., Peers, C. January 2015 (has links)
No / T-type Ca2+ channels are a distinct family of low voltage-activated Ca2+ channels which serve many roles in different tissues. Several studies have implicated them, for example, in the adaptive responses to chronic hypoxia in the cardiovascular and endocrine systems. Hydrogen sulfide (H2S) was more recently discovered as an important signalling molecule involved in many functions, including O2 sensing. Since ion channels are emerging as an important family of target proteins for modulation by H2S, and both T-type Ca2+ channels and H2S are involved in cellular responses to hypoxia, we have investigated whether recombinant and native T-type Ca2+ channels are a target for modulation by H2S. Using patch-clamp electrophysiology, we demonstrate that the H2S donor, NaHS, selectively inhibits Cav3.2 T-type Ca2+ channels heterologously expressed in HEK293 cells, whilst Cav3.1 and Cav3.3 channels were unaffected. Sensitivity of Cav3.2 channels to H2S required the presence of the redox-sensitive extracellular residue H191, which is also required for tonic binding of Zn2+ to this channel. Chelation of Zn2+ using TPEN prevented channel inhibition by H2S. H2S also selectively inhibited native T-type channels (primarily Cav3.2) in sensory dorsal root ganglion neurons. Our data demonstrate a novel target for H2S regulation, the T-type Ca2+ channel Cav3.2. Results have important implications for the proposed pro-nociceptive effects of this gasotransmitter. Implications for the control of cellular responses to hypoxia await further study.
5

Estudo dos perfis de N-glicosilação da prolactina recombinante humana expressa em células humanas HEK293 / Study of N-glycosylate profiles of human recombinant prolactin expressed in human cells HEK293

Silva, Felipe Douglas 30 July 2018 (has links)
A prolactina humana (hPRL) é um hormônio sintetizado pela hipófise com inúmeras funções tais como: lactação, reprodução e regulação osmótica. Este hormônio é frequentemente dosado em casos de problemas na lactação, infertilidade, além de estudos que elucidam sua ligação em alguns tipos de câncer (mama, próstata e útero). A hPRL é encontrada na forma não glicosilada (NG-hPRL) (23 kDa) e glicosilada (G-hPRL) (25 kDa), sendo a isoforma glicosilada um modelo ideal de análise de perfil de N-glicanos, já que possui um único sítio de glicosilação localizado na Asparagina 31. A glicosilação está relacionada diretamente à solubilidade, à estabilidade, ao enovelamento, à meia-vida e atividade biológica in vivo. As células de ovário de hamster chinês (CHO) e as células embrionárias de rim humano (HEK293) são os hospedeiros mais utilizados para expressão de proteínas recombinantes, já que podem ser cultivadas em altas densidades e por possuírem similaridade nas modificações pós-traducionais. O objetivo foi expressar, purificar e realizar uma caracterização físico-química e biológica da hPRL glicosilada de células HEK293, incluindo análise da estrutura de carboidratos. Para tanto, foi realizada uma transfecção em células HEK293T (aderidas) com o vetor pcDNA 3.4-TOPO. Foi obtida uma expressão de 21,26 &plusmn; 8,3 &mu;g/mL de hPRL no meio condicionado sem soro. A hPRL foi purificada por cromatografia de afinidade a metais imobilizados (IMAC), eluindo 92% da hPRL em uma única fração que, analisada por HPSEC, apresentou pureza de 97%. O perfil de N-glicanos da amostra apresentou seis espécies, todas com terminação em ácido-siálico, do tipo complexo, sendo bi, tri e tetra-antenárias, com relativa predominância da espécie N2G2S1 (29,4%). A bioatividade in vitro da G-hPRL HEK293 demonstrou ser &cong; 16 vezes menor que a G-hPRL produzida em células CHO. / Human prolactin (hPRL) is a hormone synthesized by the pituitary gland with innumerable functions such as lactation, reproduction and osmotic regulation. This hormone is often determined in cases of lactation problems, infertility, and studies that elucidate its connection in some types of cancer (breast, prostate and uterus). The hPRL is found in the non-glycosylated (NG-hPRL) (23 kDa) and glycosylated (G-hPRL) (25 kDa) form, being the glycosylated isoform an ideal model for N-glycan profile analysis, since it has a single glycosylation site located in Asparagine 31. Glycosylation is directly related to solubility, stability, folding, half-life and biological activity in vivo. Chinese hamster ovary (CHO) cells and human embryonic kidney (HEK293) cells are the most widely used hosts for expression of recombinant proteins, since they can be grown at high densities and have similarity in post-translational modifications. The objective of this work was to express, purify and perform a physicochemical and biological characterization of the glycosylated hPRL from HEK293 cells, including analysis of the carbohydrate structure. For this purpose, a transfection was performed on HEK293T (adhered) cells with the 3.4-TOPO pcDNA vector. Expression of 21.26 &plusmn; 8.3 &mu;g/mL hPRL in the serum free conditioned medium was obtained. The hPRL was purified by immobilized metal affinity chromatography (IMAC), eluting 92% of the hPRL in a single fraction which analyzed by HPSEC, showed 97% purity. The N-glycans profile of the sample showed six species, all with sialic acid termination, complex type, being bi, tri and tetra antennary, with a relative predominance of N2G2S1 (29.4%). In vitro bioactivity of G-hPRL HEK293 demonstrated to be &cong; 16-fold lower than G-hPRL produced in CHO cells.
6

Estudo dos perfis de N-glicosilação da prolactina recombinante humana expressa em células humanas HEK293 / Study of N-glycosylate profiles of human recombinant prolactin expressed in human cells HEK293

Felipe Douglas Silva 30 July 2018 (has links)
A prolactina humana (hPRL) é um hormônio sintetizado pela hipófise com inúmeras funções tais como: lactação, reprodução e regulação osmótica. Este hormônio é frequentemente dosado em casos de problemas na lactação, infertilidade, além de estudos que elucidam sua ligação em alguns tipos de câncer (mama, próstata e útero). A hPRL é encontrada na forma não glicosilada (NG-hPRL) (23 kDa) e glicosilada (G-hPRL) (25 kDa), sendo a isoforma glicosilada um modelo ideal de análise de perfil de N-glicanos, já que possui um único sítio de glicosilação localizado na Asparagina 31. A glicosilação está relacionada diretamente à solubilidade, à estabilidade, ao enovelamento, à meia-vida e atividade biológica in vivo. As células de ovário de hamster chinês (CHO) e as células embrionárias de rim humano (HEK293) são os hospedeiros mais utilizados para expressão de proteínas recombinantes, já que podem ser cultivadas em altas densidades e por possuírem similaridade nas modificações pós-traducionais. O objetivo foi expressar, purificar e realizar uma caracterização físico-química e biológica da hPRL glicosilada de células HEK293, incluindo análise da estrutura de carboidratos. Para tanto, foi realizada uma transfecção em células HEK293T (aderidas) com o vetor pcDNA 3.4-TOPO. Foi obtida uma expressão de 21,26 &plusmn; 8,3 &mu;g/mL de hPRL no meio condicionado sem soro. A hPRL foi purificada por cromatografia de afinidade a metais imobilizados (IMAC), eluindo 92% da hPRL em uma única fração que, analisada por HPSEC, apresentou pureza de 97%. O perfil de N-glicanos da amostra apresentou seis espécies, todas com terminação em ácido-siálico, do tipo complexo, sendo bi, tri e tetra-antenárias, com relativa predominância da espécie N2G2S1 (29,4%). A bioatividade in vitro da G-hPRL HEK293 demonstrou ser &cong; 16 vezes menor que a G-hPRL produzida em células CHO. / Human prolactin (hPRL) is a hormone synthesized by the pituitary gland with innumerable functions such as lactation, reproduction and osmotic regulation. This hormone is often determined in cases of lactation problems, infertility, and studies that elucidate its connection in some types of cancer (breast, prostate and uterus). The hPRL is found in the non-glycosylated (NG-hPRL) (23 kDa) and glycosylated (G-hPRL) (25 kDa) form, being the glycosylated isoform an ideal model for N-glycan profile analysis, since it has a single glycosylation site located in Asparagine 31. Glycosylation is directly related to solubility, stability, folding, half-life and biological activity in vivo. Chinese hamster ovary (CHO) cells and human embryonic kidney (HEK293) cells are the most widely used hosts for expression of recombinant proteins, since they can be grown at high densities and have similarity in post-translational modifications. The objective of this work was to express, purify and perform a physicochemical and biological characterization of the glycosylated hPRL from HEK293 cells, including analysis of the carbohydrate structure. For this purpose, a transfection was performed on HEK293T (adhered) cells with the 3.4-TOPO pcDNA vector. Expression of 21.26 &plusmn; 8.3 &mu;g/mL hPRL in the serum free conditioned medium was obtained. The hPRL was purified by immobilized metal affinity chromatography (IMAC), eluting 92% of the hPRL in a single fraction which analyzed by HPSEC, showed 97% purity. The N-glycans profile of the sample showed six species, all with sialic acid termination, complex type, being bi, tri and tetra antennary, with a relative predominance of N2G2S1 (29.4%). In vitro bioactivity of G-hPRL HEK293 demonstrated to be &cong; 16-fold lower than G-hPRL produced in CHO cells.
7

Differentielle pharmakologische Sensitivität von humanen 5-HT3-Rezeptor-Subtypen

Brünker, Sandra 12 November 2010 (has links) (PDF)
Ziel dieser Arbeit war die elektrophysiologische Charakterisierung des vor kurzem erstmals von NIESLER et al. (2003) klonierten humanen 5-HT3A+E-Rezeptors. Da dieser Rezeptor-Subtyp ausschließlich im Gastrointestinaltrakt exprimiert wird, ist ein Einfluss auf Nausea und Emesis sehr wahrscheinlich. Es stellt sich demnach die Frage, ob funktionelle Unterschiede zum homomeren 5-HT3A-Rezeptor und zum heteromeren 5-HT3A+B-Rezeptor bestehen, und ob auf molekularer Ebene unterschiedliche Wirkungen emetogener bzw. antiemetischer Pharmaka festzustellen sind. Um die Wirkmechanismen und die Interaktionen eines Pharmakons mit den 5-HT3-Rezeptor-Subtypen beurteilen zu können, erfordert dies genaue Kenntnisse über das biophysikalische Verhalten und die pharmakologische Sensitivität der 5-HT3-Rezeptor-Untereinheiten. Die Experimente erfolgten in-vitro an heterolog in HEK293-Zellen exprimierten Rezeptoren, wobei alleinig die 5-HT3A-Untereinheit in der Lage ist, funktionelle homopentamere Rezeptoren auszubilden. Die 5-HT3E- und 5-HT3B-Untereinheiten können nur zusammen mit der 5-HT3A-Untereinheit an die Zelloberfläche exprimiert werden und funktionelle heteropentamere Rezeptoren bilden. Im Verlauf der Untersuchungen hat sich herausgestellt, dass bei der Transfektion die 5-HT3E- und die 5-HT3B-Untereinheiten im Verhältnis zur 5-HT3A-Untereinheit signifikant schwächer exprimiert werden. Mittels der experimentellen Methode der Patch-Clamp Technik im „excised-patch“ („outside-out“)- und im Ganzzell-Modus war es möglich, die biophysikalischen und pharmakologischen Eigenschaften des heteromeren 5-HT3A+E-Rezeptors im Vergleich mit dem homomeren 5-HT3A-Rezeptor und dem heteromeren 5-HT3A+B-Rezeptor zu analysieren. Bei den Experimenten zur Grundcharakterisierung des humanen 5-HT3A+E-Rezeptor-Subtyps zeigte die Agonisten-Konzentrations-Wirkungskurve mit einem Hill-Koeffizienten von 1,0 einen deutlichen flacheren Verlauf als die Kurve des 5-HT3A-Rezeptor-Subtyps, die einen Hill-Koeffizienten von 1,5 aufwies. Dies spricht für eine geringe Agonisten-Bindungskooperativität des 5-HT3A+E-Rezeptors. Kein Unterschied zeigte sich allerdings in der Affinität zu 5-HT, da die EC50-Werte von beiden Rezeptor-Subtypen im Bereich von ca. 7 µM lagen. Aus dem biphasischen Verlauf der Kurve konnte der Rückschluss gezogen werden, dass bei der Transfektion des heteromeren 5-HT3A+E-Rezeptors der homomere 5-HT3A-Rezeptor parallel exprimiert wird. Dasselbe Verhalten wurde auch schon für den heteromeren 5-HT3A+B-Rezeptor beschrieben (WALSTAB et al. 2008). Bei der Charakterisierung eines heteromeren Rezeptor-Subtyps ergibt sich dadurch die Schwierigkeit, dessen Eigenschaften nicht eindeutig von denen des homomeren Rezeptors unterscheiden zu können. Des Weiteren konnte im Vergleich zum homomeren 5-HT3A-Rezeptor eine schnellere Desensibilisierungszeitkonstante des heteromeren 5-HT3A+E-Rezeptors nachgewiesen werden. Insgesamt deuten die beschriebenen Ergebnisse auf eine erhöhte Sensitivität des Rezeptors für Serotonin hin. Da der 5-HT3A+E-Rezeptor ausschließlich im Gastrointestinaltrakt exprimiert wird, könnte dies ein Hinweis auf eine Beteiligung dieses Rezeptors bei der Vermittlung von Emesis sein. Bei der pharmakologischen Charakterisierung wurden der partielle 5-HT3-Rezeptoragonist Tryptamin, der volle 5-HT3-Rezeptorantagonisten Tropisetron sowie die partiellen 5-HT3-Rezeptorantagonisten Metoclopramid, Tubocurarin, Mirtazapin und der Cannabinoid-Rezeptoragonist Anandamid, welcher eine emetogene Wirkung aufweist, untersucht. Auffällig war ein deutlich flacherer Verlauf der Konzentrations-Wirkungskurve von Metoclopramid (5-HT3A+E-Rezeptor: Hill-Koeffizient = -0,8; 5-HT3A-Rezeptor: Hill-Koeffizient = -1,2) und von Mirtazapin (5-HT3A+E-Rezeptor: Hill-Koeffizient = -0,9; 5-HT3A-Rezeptor: Hill-Koeffizient = -1,3) am heteromeren 5-HT3A+E-Rezeptor. Des Weiteren konnte für Mirtazapin am 5-HT3A+E-Rezeptor ein IC50-Wert von 8,4 nM im Vergleich zu 25,4 nM am 5-HT3A-Rezeptor festgestellt werden. Diese deutlich höhere Potenz von Mirtazapin am untersuchten heteromeren Rezeptor-Subtyp sowie die geringere Bindungskooperativität von Mirtazapin und Metoclopramid am 5-HT3A+E-Rezeptor, stellen einen interessanten Ansatz für eine effektive Pharmakotherapie gastrointestinaler Erkrankungen dar. Die Ergebnisse dieser Arbeit zeigen erstmalig auf molekularer Ebene, die elektrophysiologischen Eigenschaften der humanen 5-HT3A+E-Rezeptoren sowie deren Beeinflussung durch emetogenen und antiemetische Pharmaka. Aufgrund der schwachen Expression der 5-HT3E-Untereinheit gilt es in Zukunft durch einen alternativen Weg der Transfektion, die Effizienz der Ausbeute von 5-HT3A+E-Rezeptoren zu erhöhen. / The aim of this doctor thesis was the electrophysiological characterization of the human 5-HT3A+E receptor which was recently cloned for the first time by NIESLER et al. (2003). Since the expression of this receptor subtype takes place exclusively in gastrointestinal tract, an influence on nausea and emesis is very likely. The question is if functional differences exist between homomeric 5-HT3A receptors and heteromeric 5-HT3A+B receptors, and whether different effects from emetic and antiemetic drugs can be detected at the molecular level. To assess the mechanisms and the interactions of a drug with the 5-HT3 receptor subtypes, knowledge of the biophysical characteristics and the pharmacological sensitivity of the 5-HT3 receptor subunit is required. The experiments were developed in-vitro on heterologous expressed receptors in HEK293-cells, whereat only the 5-HT3A subunit is able to form functional homopentameric receptors. The 5-HT3E and the 5-HT3B subunit can only be expressed on the cell surface and build functional heteropentameric receptors in combination with the 5-HT3A subunit. In the course of the investigations it became obvious that during transfection the 5-HT3E subunit and the 5-HT3B subunit are significantly lesser expressed than the 5-HT3A subunit. Using the patch-clamp technique in the excised-patch (outside-out) and whole-cell configuration it was possible to analyse the pharmacological and biophysical properties of the heteromeric 5-HT3A+E receptor compared with the homomeric 5-HT3A-receptor and the heteromeric 5-HT3A+B receptor. During the characterisation of the human 5-HT3A+E receptor subtype, the agonist concentration-response curve with the hillslope of 1,0 showed a significant flatter course than the graph of the 5-HT3A receptor subtype with a hillslope of 1,5. This indicates a diminished agonist binding-cooperativeness of the 5-HT3A+E receptor. No difference could be detected in the affinity to 5-HT, since the EC50 values of both receptor-subtypes were at the range of 7 µM. The biphasic course of the graph showed that by transfection of the heteromeric 5-HT3A+E receptor the homomeric 5-HT3A-receptor is expressed parallel. The same properties were described also for the 5-HT3A+B receptor (WALSTAB et al. 2008). Therefore it is difficult to distinguish the properties of a homomeric receptor by characterisation of a heteromeric receptor subtype. Furthermore, a faster desensitization of the heteromeric 5-HT3A+E-receptor could be demonstrated in comparison to homomeric 5-HT3A-receptor. Overall, the results described above indicate an increased sensitivity to the receptor for serotonin. As the 5-HT3A+E receptor is expressed exclusively in the gastro-intestinal tract, this could be an indication of involvement of this receptor in the mediation of emesis. During the pharmacological characterisation the partial 5-HT3 receptor agonist tryptamine, the full 5-HT3 receptor antagonist tropisetron as well as the partial 5-HT3 receptor antagonists metoclopramide, tubocurarin, mirtazapin and the cannabinoid receptor agonist anandamide, which has an emetic effect, were examined. The agonist concentration-response curve of metoclopramide (5-HT3A+E receptor: hillslope = -0,8; 5-HT3A receptor: hillslope = -1,2) and of mirtazapin (5-HT3A+E receptor: hillslope = -0,9; 5-HT3A receptor: hillslope = -1,3) showed a significant flatter course at the 5-HT3A+E receptor. Mirtazapin has an IC50 value of 8,4 nM at the 5-HT3A+E receptor in comparison to 25,4 nM at the 5-HT3A receptor. This significant higher potency of mirtazapin at the heteromeric 5-HT3 receptor subtype and the decreased binding-cooperativeness of mirtazapin and meteclopramide at the 5-HT3A+E receptor represent interesting approaches for an effective pharmacotherapy for gastrointestinal diseases. For the first time the results of this thesis showed the electrophysiological properties of the human 5-HT3A+E receptors and their interference by emetic and antiemetic drugs on the molecular level. Due to the decreased expression of 5-HT3E subunit, the goal for the future is to find an alternative way of transfection which increases the rate of yield for the 5-HT3A+E receptors.
8

Transportní studie in vitro na 2D a 3D buněčné úrovni / Transport studies in vitro on 2D and 3D cellular level

Urbanová, Johana January 2017 (has links)
in Hradec Králové Student: Johana Urbanová Supervisor: PharmDr. Jana Mandíková, Ph.D. = 38.02 μM), lowest indometacin μM
9

Effects of Isoproterenol on IhERG during K+ changes in HEK293 cells

Zhang, J., Shang, Lijun, Wang, T., Ni, Y., Ma, A. January 2017 (has links)
Yes / Introduction:The human ether-a-go-go related gene (hERG) encodes the pore forming protein which mediates the rapid delayed rectifier K+ current in the heart (IKr). Together with other ion channels hERG determines the cardiac action potential and regulates the heart beating. Dysfuction of the hERG ion channel will lead to acquired long QT syndrome (LQTS). Therefore, new drug candidates must pass the test for a potential inhibitory effect on the hERG current as a first step in a nonclinical testing strategy. Arrhythmias in patients with LQTS are typically triggered during physical or emotional stress, suggesting a link between sympathetic stimulation and arrhythmias. It is well known that potassium level can affect the QT interval through affecting IhERG both in vivo and in vitro.In this study, we try to find out whether the trigger effect still exist when K+ changes violently in a short time period. In other words, whether the risk of TdP aggravate when patients suffer from acute water electrolyte balance disorder, which is a common symptom in hot weather. Methods: HEK293 Cell line stably expressing hERG channel were cultured in DMEM supplemented with 10% of fetal bovine serum.Whole-cell patch-clamp method was applied for ionic current recordings. The compositions of pipette was (in mM) 125 KCl, 5 MgCl2, 5 EGTA-K, 10 HEPES-K and 5 Na-ATP adjusted to pH 7.2 with KOH. The bath solutions for recording the IhERG currents was 136 NaCl, 4 KCl, 1 MgCl2, 10 HEPES-Na, 1.8 CaCl2 and 10 glucose, pH 7.4 with NaOH. The low extracellular K+ solution was 115 KCl, 5 MgCl2, 5 EGTA-K, 10 HEPES-K and 10 Na-ATP adjusted to pH 7.2 with NaOH. Patch-clamp experiments were performed at room temperature (22 ± 1°C). The recording of low K+ current was carried out immediately after the original normal K+ solution has been totally replaced. Isoproterenol (ISO) 100nM was added into both kinds of K+ solution to apply the effect of β1-AR stimulation. Results: We found that low K+ solution increased IhERG from 907.39±18.68to 1620.08±249.44pA(n=30,P<0.05); Low K+also shifted the I-V curve to the left. IC50 in control is 10.31±5.52 mV, low K+ is -6.15±1.58 mV. When adding ISO 100nM to extracellular solution, same effects were shown for both groups.ISO decreased Imax for both group. In control group, Imax reduced from 907.39±18.68to493.16±54.41pA (n=30, P<0.01), while in low K+ group, I max decreased Imax from 1620.08±29.44to 488.48±81.87pA(n=30,P<0.05). At the same time, ISO shifts the I-V curve to the right for the control group and shift the curve to the left for low K+ group. IC50 in control when added ISO is 22.25±3.80 mV, while IC50 in low K+ group after adding 100nM ISO is -31.00±5.73 mV. Conclusion: The results from this study is contradict to those in our previous study where low K+ combined with ISO can lead to temporarily increase of QT interval in vivo.It is reported that an increase in net outward repolarizing current, due to a relatively large increase of IKs, is responsible for the changes of QT interval in response to beta-adrenergic stimulation in vivo(2). Therefore future studies need to co-transfect IKs channel to confirm this. References: 1. Guo J, Massaeli H, Xu J, Jia Z, Wigle JT, Mesaeli N, et al. Extracellular K+ concentration controls cell surface density of IKr in rabbit hearts and of the HERG channel in human cell lines. The Journal of clinical investigation. 2009;119(9):2745- 57. 2. Shimizu W, Antzelevitch C. Differential effects of beta-adrenergic agonists and antagonists in LQT1, LQT2 and LQT3 models of the long QT syndrome. Journal of the American College of Cardiology. 2000;35(3):778-86.
10

Geração de clones de células HEK293 superprodutores de isoformas recombinantes de VEGF-A (Fator de Crescimento Endotelial Vascular A) humano visando à produção de biofármacos para terapia molecular e engenharia tecidual / Generation of HEK293 cell clones overexpressing recombinant isoforms of human VEGF-A (Vascular Endothelial Growth Factor A) with the aim of producing biopharmaceuticals for molecular therapy and tissue engineering

Belchior, Gustavo Gross 25 April 2014 (has links)
Os primeiros vasos sanguíneos do embrião de vertebrados, formados de novo a partir de células originadas da mesoderme, originam os vasos linfáticos em um processo denominado vasculogênese. Já no adulto, novos vasos são formados principalmente através da angiogênese (ou linfoangiogênese) a partir da vasculatura pré-existente. Em indivíduos saudáveis, a arquitetura vascular é relativamente estática, sendo que o excesso ou a insuficiência de vasos são comumente relacionados à angiogênese patológica, vinculada a diversas doenças, como câncer, degeneração macular relacionada à idade, isquemia de membros e muitas outras. Dessa forma, o controle local da densidade de vasos sanguíneos torna-se interessante para o tratamento de condições patológicas visando melhoria de prognóstico e cura. Dentre os diversos fatores de crescimento conhecidos, o fator de crescimento endotelial vascular, VEGF, destaca-se como o principal regulador do processo de angiogênese através de isoformas pró-angiogênicas (VEGFxxx) e antiangiogênicas (VEGFxxxb) do gene VEGF-A. Consequentemente, as proteínas codificadas por esse gene constituem um alvo com alto potencial terapêutico. No presente estudo, propusemos a produção das isoformas proteicas recombinantes rhVEGF165, rhVEGF165b e rhVEGF121, oriundas do gene VEGF-A humano, visando à geração de biofármacos que podem ser utilizados para terapia molecular e engenharia tecidual. As sequências codificadoras das isoformas rhVEGF165 e rhVEGF121 foram amplificadas a partir do cDNA total sintetizado de amostras de RNA total de pulmão humano, enquanto que a da isoforma rhVEGF165b foi gerada através da mutação sítio-dirigida da sequência de rhVEGF165. As sequências foram clonadas no vetor de clonagem pGEM®-T Easy, sendo em seguida subclonadas no vetor pLV-eGFP, um vetor plasmidial de transferência lentiviral, que permite a expressão de transgenes em células de mamíferos e, também, da proteína repórter eGFP. Células humanas HEK293 em cultura aderente foram independentemente cotransfectadas com cada uma das construções geradas (pLV-rhVEGF165, pLV-rhVEGF165b e pLV-rhVEGFl21) juntamente com o vetor pTK-Hyg na proporção de 40:1 (m/m), viabilizando a seleção dos transfectantes com o antibiótico higromicina B, além da detecção de eGFP. Os clones celulares superprodutores das proteínas de interesse foram avaliados quanto à cinética de expressão em meio carente de soro e adaptados para a cultura em suspensão estática na presença de meio na ausência de componentes derivados de animais, demostrando a capacidade de expressão das isoformas rhVEGFs nestas condições de cultivo. Para o nosso conhecimento, este é o primeiro trabalho a descrever a expressão de isoformas de VEGF-A em células HEK293 mantidas em suspensão. As isoformas rhVEGF165 e rhVEGF165b foram purificadas por cromatografia de afinidade a heparina, a partir do meio condicionado pelos clones superprodutores gerados. Ensaios in vitro, utilizando o AngioPhaseTM Kit, e in vivo, através do ensaio da membrana corioalantoide em embriões de galinha (CAM Assay), ambos próprios para avaliação da atividade pró- e antiangiogênica de diferentes compostos, demonstraram que a isoforma rhVEGF165 possui atividade biológica, enquanto a isoforma rhVEGF165b não apresentou a atividade esperada (inibição da angiogênese). Estas isoformas foram testadas em modelo murino de engenharia tecidual do intestino curto, com indícios de que poderiam contribuir para o uso terapêutico neste contexto. A purificação da isoforma rhVEGF121, bem como as análises estruturais das proteínas produzidas, estão em processo de otimização. / The first blood vessels of the vertebrate embryo are formed de novo from mesoderm-derived cells and give rise to lymph vessels in a process termed vasculogenesis. In the adult, new blood vessels are formed mainly through angiogenesis (or lymphangiogenesis) from the pre-existing vasculature. In healthy individuals, the vascular architecture is fairly static, and both the excess and the insufficiency of vessels comprise a pathological angiogenic state, to which is credited the onset and/or progression of several diseases such as cancer, age-related macular degeneration, limb ischemia, and many others. Therefore, locally controlling the blood vessel density becomes interesting for the treatment of pathological conditions aiming at prognosis improvement and cure. Among the various known growth factors, the vascular endothelial growth factor, VEGF, stands out as the major regulator of the angiogenic process. This process is mediated through the action of pro- (VEGFxxx) and antiangiogenic (VEGFxxxb) isoforms, which are derived from the VEGF-A gene. Consequently, the proteins encoded by this gene are potential therapeutic targets. In this work, we set out to produce the recombinant protein isoforms rhVEGF165, rhVEGF165b, and rhVEGF121, which originate from the human VEGF-A gene, with the aim of generating biopharmaceuticals to be used for molecular therapy and tissue engineering. The rhVEGF165 and rhVEGF121 coding sequences were amplified from total cDNA sythesized from human lung total RNA. Conversely, the rhVEGF165b coding sequence was generated by site-directed mutagenesis of the rhVEGF165 sequence. The sequences were cloned into the pGEM®-T Easy cloning vector. These cDNAs were then subcloned into pLV-eGFP, a plasmid lentiviral transfer vector that allows for expression of transgenes and the eGFP reporter protein in mammalian cells. Human HEK293 cells cultivated under adherent conditions were independently co-transfected with each of the obtained constructs (pLV-rhVEGF165, pLV-rhVEGF165b, and pLV-rhVEGF121) and the pTK-Hyg vector at a proportion of 40:1 (m/m), enabling for the selection of transfectants with hygromycin B, apart from the detection of eGFP. The cell clones overexpressing the proteins of interest were evaluated for expression kinetics in serum-deprived conditioned media and adapted to static suspension culture in medium free of animal-derived components, demonstrating that expression of the protein isoforms was possible in these culture conditions. To the best of our knowledge, this is the first work that describes the expression of VEGF-A isoforms in HEK293 cells in suspension culture. The rhVEGF165 and rhVEGF165b isoforms were purified by affinity chromatography from media previously conditioned by the overexpressing cell clones. The biological activity of rhVEGF165 was demonstrated in vitro, by the AngioPhaseTM Kit assay, and in vivo with the CAM (chorioallantoic membrane) assay, both of which are suitable for evaluating the pro- and antiangiogenic activity of different compounds. The rhVEGF165b did not show the expected antiangiogenic activity. These isoforms were tested in a model of murine tissue-engineered small intestine, indicating a possible contribution to therapeutic use in this context. The purification of rhVEGF121, as well as the structural analysis of all three proteins, are in the process of being optimized.

Page generated in 0.08 seconds