• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Combinatorial Protein Engineering Of Affibody Molecules Using E. Coli Display And Rational Design Of Affibody-Based Tracers For Medical Imaging

Andersson, Ken G. January 2017 (has links)
Directed evolution is today an established strategy for generation of new affinity proteins. This thesis describes the development of a cell-display method using Escherichia coli for directed evolution of Affibody molecules. Further, the thesis describes rational design of Affibody-based tracers, intended for future patient stratification using medical imaging. Fusing recombinant proteins to various autotransporters is a promising approach for efficient surface display on the surface of E. coli, as well as for construction of high-complexity libraries. In paper I, we successfully engineered an expression vector for display of Affibody molecules using the autotransporter AIDA-I. In paper II, a large Affibody library of 2.3x109 variants was constructed and screening using FACS resulted in new specific binders in the nanomolar range. In paper III, we demonstrated Sortase-mediated secretion and conjugation of binders directly from the E. coli surface.  The three following studies describe rational design of Affibody-based tracers against two cancer-associated targets for molecular imaging. First, anti-HER3 Affibody molecules were labelled with 111In, and SPECT imaging showed that the conjugates specifically targeted HER3-expressing xenografts. Furthermore, labeling with 68Ga for PET imaging showed that tumor uptake correlated with HER3 expression, suggesting that the tracers have potential for patient stratification. The last study describes the development and investigation of anti-EGFR Affibody-based imaging agents. Labeled with 89Zr, the Affibody tracer demonstrated higher tumor uptake at 3 h post injection than the anti-EGFR antibody cetuximab at 48 h post injection.  In conclusion, this thesis describes new tools and knowledge that will hopefully contribute to the development of affinity proteins for biotechnology, therapy and medical imaging in the future. / <p>QC 20170904</p>

Page generated in 0.0465 seconds