• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 262
  • 203
  • 52
  • 15
  • 11
  • 11
  • 11
  • 11
  • 11
  • 11
  • 11
  • 11
  • 7
  • 6
  • 2
  • Tagged with
  • 654
  • 654
  • 654
  • 633
  • 247
  • 232
  • 188
  • 179
  • 108
  • 101
  • 90
  • 86
  • 71
  • 63
  • 62
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Characterization and quantification of anthocyanins and other phenolics in native Andean potatoes

Polit, Maria Fernanda, January 2009 (has links)
Thesis (M.S.)--Ohio State University, 2009. / Title from first page of PDF file. Includes vita. Includes bibliographical references (p. 68-76).
22

Stability studies of coal liquid products using high performance liquid chromatography

Norcio, Lawrence P. January 1999 (has links)
Thesis (Ph. D.)--West Virginia University, 1999. / Title from document title page. Document formatted into pages; contains xi, 152 p. : ill. (some col.) Vita. Includes abstract. Includes bibliographical references (p. 127-133).
23

Liquid chromatographic separation and sensing principles with a water only mobile phase /

Foster, Marc Douglas, January 1996 (has links)
Thesis (Ph. D.)--University of Washington, 1996. / Vita. Includes bibliographical references (leaves [140]-147).
24

Enantiomeric separations by HPLC : temperature, mobile phase, flow rate and retention mechanism studies /

Klute, Robert Cragg, January 1993 (has links)
Thesis (Ph. D.)--Virginia Polytechnic Institute and State University, 1993. / Vita. Abstract. Includes bibliographical references (leaves 205-214). Also available via the Internet.
25

Deconvolution of mobile phase contributions to band broadening in reversed-phase liquid chromatography

Simmons, Carolyn Rebecca. Dorsey, John G. January 2005 (has links)
Thesis (Ph. D.)--Florida State University, 2005. / Advisor: John G. Dorsey, Florida State University, College of Arts and Sciences, Dept. of Chemistry and Biochemistry. Title and description from dissertation home page (viewed Jan. 25, 2006). Document formatted into pages; contains xxiii, 132 pages. Includes bibliographical references.
26

HPLC analysis and pharmacokinetics of cyclizine

Walker, Roderick Bryan January 1995 (has links)
The investigations detailed in this dissertation have been conducted to address the paucity of pharmacokinetic information, in published literature, pertaining to cyclizine. The areas of investigation have included the selective quantitation of both cyclizine and its demethylated metabolite, norcyclizine in serum and urine, assessment of stability of both compounds in stored biological samples, dosage form analysis, dissolution rate testing of tablets, and bioavailability and pharmacokinetics following administration of an intravenous solution, and tablets to humans. High-performance liquid chromatography (HPLC) was used as the main analytical technique throughout these studies. An original HPLC method employing ultraviolet detection with a limit of quantitation of 5μg/ℓ was developed for the determination of cyclizine in serum and both cyclizine and norcyclizine in urine, Solid-phase extraction using extraction columns packed with reversed-phase C18 material, and followed by a simple phase-separation step proved successful for the accurate and precise isolation of the compounds. The validated method was applied to the analysis of serum and urine samples from a pilot study in which a single volunteer was administered 50mg of cyclizine hydrochloride. Several samples collected during the pilot study revealed the presence of both drug and metabolite in concentrations below the limit of detection. In order to improve the selectivity and sensitivity of the analytical method an HPLC method with electrochemical detection operating in the "oxidative-screen" mode was developed. The solid-phase extraction procedure was modified slightly and the method found to be precise, accurate, selective and highly sensitive with a limit of quantitation of Iμg/g/l for both cyclizine and norcyclizine in both serum and urine. This method was applied to the determination of both compounds after intravenous and oral administration of cyclizine to humans. HPLC with electrochemical detection was used for the analysis of samples collected during dissolution studies on the batch of tablets used for pharmacokinetic studies. In addition, this method was used to assess content uniformity of the tablets and of samples from the batch of intravenous ampoules of cyclizine lactate. Dissolution studies showed that all tablets tested passed the compendial specifications for cyclizine. Content uniformity assessment revealed that within-batch uniformity existed for both the tablets and ampoules and, therefore, variations in pharmacokinetic parameters for the drug would more than likely be as a result of inter- and intra-individual variability within the subject population. Pharmacokinetic information for cyclizine was obtained following administration of an intravenous bolus dose of cyclizine lactate as a solution, oral administration of cyclizine hydrochloride as a single dose of 50mg and as fixed multiple doses of 50mg every 8 hours for five days. Further information was acquired following administration of single doses of 100mg and 150mg cyclizine hydrochloride. Data collected from these studies were evaluated using both compartmental and non-compartmental techniques. Cyclizine was rapidly absorbed following oral administration with mean kₐ = 1.54 hr⁻¹ and was found to have an absolute bioavailability (F) of 0.47. The presence of norcyclizine in serum following oral and not intravenous dosing suggests cyclizine is susceptible to "first-pass" metabolism in either the gut wall or the I iver. Mean ClTOT determined following the intravenous dose was 0.865 ℓ/hr/kg. The mean ClTOT of 0.823 ℓ/hr/kg calculated following oral dosing, using a unique value of F for each subject compared favourahly with that obtained following intravenous dosing. Renal clearance of cyclizine is negligihle indicating that non-renal routes of elimination account for the majority of removal of cyclizine form the body. Cyclizine is extensively distributed and the mean Vz following an intravenous dose was 16.70 ℓ/kg. This value is lower than that calculated from all oral studies from which the mean Vz was determined to be 25.74 ℓ/kg. Cyclizine is eliminated slowly with a mean elimination t½ = 20.11 hours. Cyclizine dose not appear to follow dosedependent kinetics and therefore, inability to predict steady state levels are more than likely due to accumulation as a result of frequent dosing rather than saturation of elimination mechanisms. Modelling of intravenous data to one-compartment (lBCM), two-compartment (2BCM) and threecompartment models indicated that the pharmacokinetics of cyclizine can be adequately described by a 3BCM. The drug is rapidly distributed into a "shallow" peripheral compartment (α = 9.44 hr⁻¹ , and k₂₁ = 2.09 hr⁻¹ ), and slowly distributed to the "deep" peripheral compartment (β = 0.451 hr⁻¹ and k₃₁ = 0.120 hr⁻¹ ). Modelling of all oral data indicated that a 2BCM best described the pharmacokinetics of the drug, however, distribution to the peripheral compartment is not as rapid as to the "shallow" peripheral compartment following the intravenous dose. Mean distribution parameters were α = 0.64 hr⁻¹1 and, k₂₁ = 0.39 hr⁻¹. Mean CITOT following intravenous dosing of 0.70 ℓ/hr/kg was similar to the mean CIToT of 0.73 ℓ/hr/kg determined after oral dosing. The mean distribution volume at steady state determined following intravenous dosing (17.78 ℓ/kg) was lower than that obtained from the oral studies (25.52 ℓ/kg). The mean terminal elimination half-lives calculated for cyclizine following fitting of intravenous and oral data was 25.09 hours. In general, mean pharmacokinetic parameters calculated following titting of data to a 2BCM after oral administration correlate closely with those calculated using non-compartmental techniques. However, the pharmacokinetics following intravenous dosing are better described by a 3BCM and a close correlation between parameters estimated using noncompartmental techniques and compartmental techniques is evident when a 3BCM model is used.
27

Phenylpropanolamine : analytical and pharmacokinetic studies using high-performance liquid chromatography

Scherzinger, Sabine Hilda January 1988 (has links)
Phenylpropanolamine (PPA), a synthetic sympathomimetic amine structurally related to ephedrine has been widely used over t he past 40 years as a nasal decongestant and appetite suppressant. It has been the focus of much controversy concerning the efficacy of the drug in its use as an anorectic agent, and due to the side effects caused by the higher doses of PPA required for appetite suppression. Although extensively used, there is little information concerning the determination of PPA in biological fluids and on the pharmacokinetics of this drug. An adaptation of a published high-performance liquid chromatographic (HPLC) assay for PPA in serum and urine using U.V. detection at 210 nm is presented. PPA was separated in the reversed phase mode. The method has a limit of sensitivity of 5.0 ng/mL and 10.0 ng/mL in serum and urine respectively. Serum concentration data following a single 25 mg dose of phenylpropanolamine in human volunteers demonstrate the application of the analytical method for bioavailability and pharmacokinetic studies. After the administration of 25 mg, 50 mg or 100 mg PPA.HCl solutions to 5 human volunteers, a dose proportionality study demonstrated that PPA appears to exhibit linear kinetics. Linear one body compartment kinetics were assumed and the wagner-Nelson method used to transform in vivo serum data to absorption plots. The serum data were fitted to a model using nonlinear regression techniques to characterize the pharmacokinetic processes of PPA. The absorption of phenylpropanolamine appears to be discontinuous and the drug seems to favour a two body compartment model. The pharmacokinetic parameters obtained from a steady state study using multiple dosing of PPA.HCl solutions compared with those found from previous studies after the administration of sustained-release formulations. A plasma protein binding study using equilibrium dialysis demonstrated that PPA is not highly protein bound in the blood.
28

Synthesis, characterization, and approaches to the analysis by HPLC-THG-AAS of trimethylselenonium, selenoniumcholine and selenoniumacetylcholine cations

Huyghues-Despointes, Alexis January 1991 (has links)
No description available.
29

RP-HPLC separation and kinetics of the decomposition products of tryptophan amadori compound

Forage, Nazhat George January 1990 (has links)
No description available.
30

Synthesis and Characterization of Amino-derived t-butyl-calix[4]arene Bonded Phases for HPLC

Eliser, Erica E. 14 December 2001 (has links)
No description available.

Page generated in 0.0285 seconds