Spelling suggestions: "subject:"HIL simulationlation"" "subject:"HIL motionsimulation""
1 |
Waveform relaxation based hardware-in-the-loop simulationGoulkhah, Mohammad (Monty) January 2015 (has links)
This thesis introduces an alternative potentially low cost solution for hardware-in-the-loop (HIL) simulation based on the waveform relaxation (WR) method. The WR tech-nique is extended so that, without the need for a real-time simulator, the behaviour of an actual piece of physical hardware can nevertheless be tested as though it were connected to a large external electrical network. This is achieved by simulating the external network on an off-line electromagnetic transients (EMT) simulation program, and utilizing iterative exchange of waveforms between the simulation and the hardware by means of a spe-cialized Real-Time Player/Recorder (RTPR) interface device. The approach is referred to as waveform relaxation based hardware-in-the-loop (WR-HIL) simulation.
To make the method possible, the thesis introduces several new innovations for stabi-lizing and accelerating the WR-HIL algorithm. It is shown that the classical WR shows poor or no convergence when at least one of the subsystems is an actual device. The noise and analog-digital converters’ quantization errors and other hardware disturbances can affect the waveforms and cause the WR to diverge. Therefore, the application of the WR method in performing HIL simulation is not straightforward and the classical WR need to be modified accordingly.
Three convergence techniques are proposed to improve the WR-HIL simulation con-vergence. Each technique is evaluated by an experimental example. The stability of the WR-HIL simulation is studied and a stabilization technique is proposed to provide suffi-cient conditions for the simulation stability.
The approach is also extended to include the optimization of the parameters of power system controllers located in geographically distant places. The WR-HIL simulation technique is presented with several examples. At the end of the thesis, suggestions for the future work are presented. / February 2016
|
2 |
GNSS-based Spacecraft Formation Flying Simulation and Ionospheric Remote Sensing ApplicationsPeng, Yuxiang 18 May 2017 (has links)
The Global Navigation Satellite System (GNSS) is significantly advantageous to absolute and relative navigation for spacecraft formation flying. Ionospheric remote sensing, such as Total Electron Content (TEC) measurements or ionospheric irregularity studies are important potential Low Earth Orbit (LEO) applications. A GNSS-based Hardware-in-the-loop (HIL) simulation testbed for LEO spacecraft formation flying has been developed and evaluated. The testbed infrastructure is composed of GNSS simulators, multi-constellation GNSS receiver(s), the Navigation & Control system and the Systems Tool Kit (STK) visualization system. A reference scenario of two LEO spacecraft is simulated with the initial in-track separation of 1000-m and targeted leader-follower configuration of 100-m along-track offset. Therefore, the feasibility and performance of the testbed have been demonstrated by benchmarking the simulation results with past work.
For ionospheric remote sensing, multi-constellation multi-frequency GNSS receivers are used to develop the GNSS TEC measurement and model evaluation system. GPS, GLONASS, Galileo and Beidou constellations are considered in this work. Multi-constellation GNSS TEC measurements and the GNSS-based HIL simulation testbed were integrated and applied to design a LEO satellite formation flying mission for ionospheric remote sensing. A scenario of observing sporadic E is illustrated and adopted to demonstrate how to apply GNSS-based spacecraft formation flying to study the ionospheric irregularities using the HIL simulation testbed. The entire infrastructure of GNSS-based spacecraft formation flying simulation and ionospheric remote sensing developed at Virginia Tech is capable of supporting future ionospheric remote sensing mission design and validation. / Master of Science / Global Navigation Satellite Systems (GNSS), such as the Global Positioning System (GPS), are not only used to navigate vehicles such as automobiles and spacecraft, but they are also used as a tool to remotely study the Earth’s ionosphere. A GNSS-based hardware simulation testbed for a group of spacecraft flying in low altitude orbit with the capability to remotely sense the ionosphere has been developed and evaluated. The hardware testbed developed is composed of GNSS signal emulators, GNSS signal receiver(s), the spacecraft navigation & control system and a mission visualization system. A reference scenario of two spacecraft in low altitude orbit with an initial horizontal distance of 1000-m and a final separation of 100-m is successfully simulated. Therefore, the feasibility and performance of the hardware testbed have been demonstrated by comparing the simulation results with past work.
To study the Earth’s ionosphere, advanced GNSS receivers along with newly developed software are used to measure the ionospheric electron concentration. This software can be integrated with the hardware testbed and utilized to design spacecraft missions to study the ionosphere from the space. A scenario for observing a unique ionospheric structure is implemented to demonstrate application of the hardware testbed to more general ionospheric studies. Combining the software for ionospheric measurement and the hardware testbed for two spacecraft flying in formation can support future mission design and validation.
|
3 |
Modelování a HIL simulace ovládání pátých dveří osobního automobilu / Modelling and HIL Simulation of Vehicle Boot Door ControlMusil, Filip January 2017 (has links)
This diploma thesis focuses on an analysis, a model creation and simulations of a car boot door mechanism. The problem was analyzed on the basis of real measurements made on three different vehicles. Based on the measurements, computational models describing the real system at different levels of complexity were created. Matlab/Simulink was used to create and calculate the models. The output of the thesis is the simulator of a car boot door which also includes simplified model of a control unit. The simulator should provide an approximation of current and kinematic quantities of these mechanisms. The model is implemented on dSPACE platform that allows real-time simulations. The simulator can be modified in terms of changing the parameters of the mechanism and modifying some of its results.
|
4 |
Low cost integration of Electric Power-Assisted Steering (EPAS) with Enhanced Stability Program (ESP)Soltani, Amirmasoud January 2014 (has links)
Vehicle Dynamics Control (VDC) systems (also known as Active Chassis systems) are mechatronic systems developed for improving vehicle comfort, handling and/or stability. Traditionally, most of these systems have been individually developed and manufactured by various suppliers and utilised by automotive manufacturers. These decentralised control systems usually improve one aspect of vehicle performance and in some cases even worsen some other features of the vehicle. Although the benefit of the stand-alone VDC systems has been proven, however, by increasing the number of the active systems in vehicles, the importance of controlling them in a coordinated and integrated manner to reduce the system complexity, eliminate the possible conflicts as well as expand the system operational envelope, has become predominant. The subject of Integrated Vehicle Dynamics Control (IVDC) for improving the overall vehicle performance in the existence of several VDC active systems has recently become the topic of many research and development activities in both academia and industries Several approaches have been proposed for integration of vehicle control systems, which range from the simple and obvious solution of networking the sensors, actuators and processors signals through different protocols like CAN or FlexRay, to some sort of complicated multi-layered, multi-variable control architectures. In fact, development of an integrated control system is a challenging multidisciplinary task and should be able to reduce the complexity, increase the flexibility and improve the overall performance of the vehicle. The aim of this thesis is to develop a low-cost control scheme for integration of Electric Power-Assisted Steering (EPAS) system with Enhanced Stability Program (ESP) system to improve driver comfort as well as vehicle safety. In this dissertation, a systematic approach toward a modular, flexible and reconfigurable control architecture for integrated vehicle dynamics control systems is proposed which can be implemented in real time environment with low computational cost. The proposed control architecture, so named “Integrated Vehicle Control System (IVCS)”, is customised for integration of EPAS and ESP control systems. IVCS architecture consists of three cascade control loops, including high-level vehicle control, low-level (steering torque and brake slip) control and smart actuator (EPAS and EHB) control systems. The controllers are designed based on Youla parameterisation (closed-loop shaping) method. A fast, adaptive and reconfigurable control allocation scheme is proposed to coordinate the control of EPAS and ESP systems. An integrated ESP & ESP HiL/RCP system including the real EPAS and Electro Hydraulic Brake (EHB) smart actuators integrated with a virtual vehicle model (using CarMaker/HiL®) with driver in the loop capability is designed and utilised as a rapid control development platform to verify and validate the developed control systems in real time environment. Integrated Vehicle Dynamic Control is one of the most promising and challenging research and development topics. A general architecture and control logic of the IVDC system based on a modular and reconfigurable control allocation scheme for redundant systems is presented in this research. The proposed fault tolerant configuration is applicable for not only integrated control of EPAS and ESP system but also for integration of other types of the vehicle active systems which could be the subject of future works.
|
Page generated in 0.0587 seconds