1 |
Functionalizing Branched Peptides with Unnatural Amino Acids Toward Targeting HIV-1 RRE RNA and MicrobialsWynn, Jessica Elaine 29 August 2016 (has links)
The interaction of the protein Rev with Rev Response Element (RRE) RNA is critical to the HIV-1 life cycle as this complex is required for the export of singly-spliced and unspliced mRNAs from the nucleus to the cytoplasm. Disruption of this interaction is considered to be a powerful strategy towards the development of HIV-1 therapeutics. Therefore, we have developed several branched peptide libraries containing unnatural amino acids to target the high-affinity binding site of RRE RNA (RRE IIB), with the idea that branching in peptides can provide multivalent contacts with folded RNA structures and boost binding affinity and selectivity for the target. Unnatural amino acids were incorporated into the library design to encourage non-canonical interactions with the RNA and to improve proteolytic stability.
The on-bead high-throughput screening of our first branched peptide library (46,656 sequences) against HIV-1 RRE RNA generated hit peptides with binding affinities in the low micromolar range. We demonstrated that branching in the peptide is required for efficient binding and selectivity towards the RNA, and that the peptides bind a large surface area of RRE IIB. Introduction of boronic acids into branched peptides boosted selectivity of the peptides for RRE IIB, and proved to be a novel and tunable mode of binding towards RNA. Additionally, we revealed that these branched peptide boronic acids (BPBAs) were cell permeable and non-toxic. One BPBA (BPBA3) bound RRE IIB selectively and was able to inhibit HIV-1 replication in vitro, revealing enzymatic cleavage of the RNA upon binding.
A second generation BPBA library that introduced acridinyl lysine as an intercalator (4,096 sequences) was screened against RRE IIB. Several hit compounds bound in the low nanomolar regime, and a significant number of compounds inhibited HIV-1 replication in vitro. These BPBAs were also found to severely inhibit the microbial growth of bacteria and fungus, with MICs as low as 1 µg/mL against Staphylococcus aureus, Candida albicans, and Escherichia coli. These compounds were also found to significantly inhibit biofilm formation and growth, and were non-hemolytic.
High-throughput screening of a third generation BPBA library containing all unnatural amino acids (46,656 sequences) revealed several hits that bound RRE IIB RNA in the nanomolar range. Sequence motifs present in the hit peptides suggested that the location and composition of amino acids within the branched peptide structure were important for recognizing the RNA target. In particular, lead compounds 2C5 and 4B3 demonstrated selectivity towards RRE, and footprinting experiments combined with SHAPE experiments revealed different interactions of the peptides with the RNA Toxicity assays revealed no impact on cell viability for the majority of hit sequences tested up to 100 µM, and several compounds also demonstrated inhibition of HIV-1 replication. / Ph. D.
|
2 |
Branched Peptides Targeting HIV-1 RRE RNA and Structure-Activity Relationship Studies of Spinster Homolog 2 InhibitorsPeralta, Ashley N. 08 June 2020 (has links)
Binding of the Rev protein with Rev Response Element (RRE) RNA present in singly- and unspliced mRNA transcripts is necessary for the replication of HIV-1. This interaction transports the mRNA transcripts from the nucleus to the cytoplasm for translation of the necessary structural and enzymatic proteins for the newly budding virus as well as for providing its genetic material. Given the high rate of mutation in HIV-1, the highly conserved and pertinent RRE RNA is of high interest for pharmaceutical intervention. Consequently, a branched peptide library containing unnatural amino acids was developed to target RRE RNA with the goal of increasing stability, potency, selectivity, and in vivo activity for RRE RNA.
An unnatural amino acid branched peptide library (46,656 sequences) was synthesized and screened against RRE IIB and several hits in the sub-micromolar regime were found. A number of hits demonstrated selectivity in the presence of other RNAs in addition to two hits, 4A5 and 4B3, significantly inhibiting HIV-1 growth in vitro. These peptides inhibited HIV-1 replication in a concentration dependent manner and were demonstrated to be non-toxic. Further analysis of 4A5 and 4B3 via footprinting and SHAPE-MaP experiments determined that these peptides blocked binding of Rev through binding at the primary and secondary binding sites of RRE RNA.
Sphingosine 1-phosphate (S1P) is a signaling molecule that plays a role in various biological processes including immunity, neurogenesis, and angiogenesis. The role S1P plays is largely determined by its location, in which Spinster homolog 2 (spns2) and mfsd2b are the two known transporters. The two transporters exist in different cell types and cellular localizations, with spns2-produced S1P being responsible for trafficking of lymphocytes. As such, spns2 has become of interest for therapeutic targeting in autoimmune and inflammatory diseases. To validate spns2 as a target in pharmaceutical intervention, a series of spns2 inhibitors were developed.
A screening of a library of inhibitors found that compound SLP7120922 demonstrated inhibition of spns2 transport activity. The design, synthesis, and biological evaluation of inhibitors based on SLP7120922 is described. Modifications to the lipophilic tail region were performed with one compound 4.40f discovered to be potent, minimally toxic, and active in vivo. A series of modifications to the head region were then conducted that evaluated linear head derivatives with alkyl-, amide-, and amino acid-based groups. A number of compounds are reported that demonstrate good in vitro activity and minimal toxicity with two compounds, 4.48b and 4.52c, showing favorable in vivo activity in mice. / Doctor of Philosophy / Human immunodeficiency virus (HIV-1) has a high rate of mutation, which commonly leads to the need for many types of medications throughout the lifetime of a patient. In order to design a therapeutic that the virus has a low chance of growing resistance to, a target needs to be chosen with a low mutation rate. One such target is the Rev Response Element (RRE) RNA and it is necessary for the virus to replicate. A protein named Rev binds to RRE RNA in order for RRE to carry out its pertinent function. To block this function we have chosen branched peptides to target the RNA. Peptides are made of the same building blocks of proteins, but are much shorter than proteins. The peptides described here are made up of modified building blocks, called unnatural amino acids. This work describes the generation of an unnatural amino acid branched peptide library and how it was screened in order to find branched peptides that bind RRE RNA. Many peptides were found to bind RRE RNA but two in particular, 4A5 and 4B3, were the best binders that inhibited HIV-1 growth. The remainder of the work describes how these peptides bind to RRE RNA, while demonstrating that they are non-toxic and bind HIV-1 in a concentration dependent manner.
A transporter protein termed Spinster homolog 2 (spns2) transports a signaling molecule known as sphingosine 1-phosphate (S1P). For our immune system to function properly, spns2 has to transport S1P to the appropriate places to signal to immune cells. Unfortunately, this is a problem in autoimmune and inflammatory diseases, such as multiple sclerosis, due to these diseases having an overactive immune system. A potential way to treat these diseases would be by inhibiting spns2. This work describes the design, synthesis, and biological evaluation of spns2 inhibitors. Many compounds were found to inhibit spns2 to a degree, but three compounds, in particular, show potent and effective inhibition in mice.
|
Page generated in 0.0832 seconds