• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Use of Modified U1snRNAs to Inhibit HIV-1 Replication

Sajic, Rade 31 August 2011 (has links)
The rapid evolutionary rate of HIV-1 has lead to the emergence of multi-drug resistant variants, emphasizing the need for novel inhibitory methods. One such method could be based upon inhibiting viral gene expression through disruption of HIV-1 RNA processing. A means of accomplishing this goal is through use of modified U1snRNA variants that target highly conserved regions of HIV-1 at its terminal exon and prevent 3’ end formation. The modification consists of a 10-nucleotide substitution at the 5’ end complementary to the conserved HIV-1 regions. When modified U1snRNA targeted to HIV-1 were cotransfected with replication deficient HIV-1 proviruses, western blot indicated a specific and significant reduction in the level of viral protein production (p24 and gp120), while U1 constructs that lacked complementary sequences had no effect on HIV-1 protein expression. To further investigate targeted U1snRNA inhibitory effects on HIV-1, efforts are currently underway to determine if this approach has the ability to suppress protein expression in a gene therapeutic model. To date, suppression of viral protein production has reached 50% when tested with a moderately inhibitory U1snRNA. If shown to be effective, such an inhibition would be increased with the use of combinatory modified U1snRNA constructs producing a synergistic effect.
2

Use of Modified U1snRNAs to Inhibit HIV-1 Replication

Sajic, Rade 31 August 2011 (has links)
The rapid evolutionary rate of HIV-1 has lead to the emergence of multi-drug resistant variants, emphasizing the need for novel inhibitory methods. One such method could be based upon inhibiting viral gene expression through disruption of HIV-1 RNA processing. A means of accomplishing this goal is through use of modified U1snRNA variants that target highly conserved regions of HIV-1 at its terminal exon and prevent 3’ end formation. The modification consists of a 10-nucleotide substitution at the 5’ end complementary to the conserved HIV-1 regions. When modified U1snRNA targeted to HIV-1 were cotransfected with replication deficient HIV-1 proviruses, western blot indicated a specific and significant reduction in the level of viral protein production (p24 and gp120), while U1 constructs that lacked complementary sequences had no effect on HIV-1 protein expression. To further investigate targeted U1snRNA inhibitory effects on HIV-1, efforts are currently underway to determine if this approach has the ability to suppress protein expression in a gene therapeutic model. To date, suppression of viral protein production has reached 50% when tested with a moderately inhibitory U1snRNA. If shown to be effective, such an inhibition would be increased with the use of combinatory modified U1snRNA constructs producing a synergistic effect.

Page generated in 0.0868 seconds