• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Studies on HIV-1 nucleocapsid chaperone role in protein/nucleic acid interactions by single molecule spectroscopy approaches

Ma, Xiaojing, 1982- 20 August 2010 (has links)
HIV-NC is a multifunctional protein which plays an important role in almost every step of the retroviral life cycle. NC is essential in catalyzing stand transfers of HIV-1 reverse transcription, including the annealing of the transactivation response element (TAR) of the viral genome to the complementary TAR DNA in minus-strong-stop DNA. In this dissertation, the research starts with focus on elucidating the reaction mechanism of NC-facilitated TAR DNA/RNA annealing using single molecule spectroscopy (SMS) approaches. The results indicate that nucleation of TAR DNA/RNA annealing occurs in an encounter complex form in which one or two DNA/RNA strands in the partially open “Y” form associated with multiple NC molecules. This encounter complex leads to annealing through the 3’/5’ termini, namely “zipper” pathway and the annealing through the hairpin loop region, namely “kissing” pathway. By employing target oligonucleotides for specific TAR regions, we directly probed kinetic reversibility and the chaperone role of NC. Concentration-dependence of NC chaperoned melting and annealing of TAR hairpins was investigated and the results further support the proposed reaction mechanism. Additionally, we used a single-stranded DNA (ssDNA) as model to study ssDNA conformational change upon NC binding. Here we present observation of NC binding to d(TG)n and d(T)n, including NC effect on flexibility and conformation of these oligonucleotides chains. Our results reveal that the rigidity of ssDNA chain is dramatically reduced through interaction with NC. Meanwhile the results of NC dissociation experiments indicate the interaction of NC/ssDNA is complex and heterogeneous. Finally, we used SMS in vitro to systematically compare and contrast the RNA/protein interactions for the zinc-finger-binding-motif protein (NC) and the arginine-rich-binding-motif (ARM) protein (Tat) encoded by HIV-1. Tat and NC use different RNA binding motifs to recognize and interact with RNA hairpin, giving rise to very different changes in the RNA secondary structure upon protein binding. Competition experiments show that the presence of Tat can effectively inhibit the NC binding-induced local melting of TAR RNA hairpins. These results indicate that Tat specifically binds and stabilizes the TAR RNA hairpin structure, which likely inhibits the local melting of the hairpin induced by NC. / text
2

Determination of the secondary structure of minus strong-stop DNA and the mechanism of annealing involved in the first strand transfer in HIV-1 / Analyse structurale et fonctionnelle du premier transfert de brin chez le VIH-1

Chen, Yingying 14 September 2012 (has links)
Le 1er transfert de brin, étape cruciale de la transcription inverse impliquant la protéine de nucléocapside du VIH-1 (NC), repose sur l’appariement de la séquence r de l’ADN « strong stop » (ADNss) avec la séquence 3’ R de l’ARN viral (3’UTR) qui forme les tiges-boucles TAR et polyA. La séquence r est supposé former les tiges-boucles cTAR et cpolyA. Le transfert repose donc probablement sur l’hybridation de molécules structurées. La structure secondaire de l’ADNss n’a jamais été déterminée. L’objectif a été d’identifier les interactions et structures gouvernant l’hybridation de l’ADNss avec l’ARN 3’UTR. Les outils de la biologie moléculaire et trois sondes de structure ciblant l’ADN ont été utilisés pour atteindre cet objectif. Nos résultats sont les suivants : 1) l’ADN cTAR nu se replie sous la forme de deux conformations différentes qui sont en équilibre ; 2) la NC peut déplacer l’équilibre vers l’une des conformations et se fixer préférentiellement sur la boucle interne du cTAR ; 3) la NC est exigée pour former un hétéroduplex constitué de l’intégralité de l’ADNss et du 3’ UTR ; 4) l’hybridation ADNss-3’UTR peut être initiée à partir de plusieurs sites dans 0,2 mM MgCl2 ; 5) l’ADNss forme deux conformations en équilibre dans 0,2 mM MgCl2 et principalement une seule dans 2 mM MgCl2 ; 6) dans l’ADNss, la NC se fixe préférentiellement au niveau de la région simple-brin qui relie les tiges-boucles cTAR et cpolyA. Cette fixation joue probablement un rôle important dans l’hybridation des tiges-boucles ARN et ADN complémentaires. Notre étude permet de mieux comprendre la transcription inverse et la recombinaison qui dépend du transfert de brin interne. / The 1st strand transfer, a crucial step of reverse transcription involving the HIV-1 nucleocapsid protein (NC), relies on base pairing of the r sequence of strong-stop DNA (ssDNA) with the 3’ R sequence of viral RNA (3’ UTR) which forms the TAR and polyA stem-loops. The r sequence can form the cTAR and cpolyA stem-loops. Therefore, the transfer relies probably on annealing of folded molecules. This process is not well known at the molecular and structural level. The tools of molecular biology and three DNA-targeted probes were used to get insights into the annealing process. Our results were the following: 1) in the absence of NC, the cTAR DNA folds into two distinct conformations in equilibrium; 2) NC slightly shifts the equilibrium toward one conformation and binds tightly the internal loop of the cTAR hairpin; 3) NC is required for the formation of heteroduplex of the full-length ssDNA and 3’ UTR; 4) the annealing of ssDNA to 3’ UTR can be initiated from different sites in the presence of 0.2 mM MgCl2; 5) the full-length ssDNA folds into two conformations in equilibrium in 0.2 mM MgCl2 but mainly into one conformation in 2 mM MgCl2 ; 6) NC preferentially binds to the single-stranded region between the cTAR and cpolyA hairpins in ssDNA. This binding site probably plays an important role in the annealing of complementary DNA and RNA hairpins. This study helps us to gain insights into the reverse transcription process and the associated genetic recombination.
3

Determination of the secondary structure of minus strong-stop DNA and the mechanism of annealing involved in the first strand transfer in HIV-1

Chen, Yingying 14 September 2012 (has links) (PDF)
The 1st strand transfer, a crucial step of reverse transcription involving the HIV-1 nucleocapsid protein (NC), relies on base pairing of the r sequence of strong-stop DNA (ssDNA) with the 3' R sequence of viral RNA (3' UTR) which forms the TAR and polyA stem-loops. The r sequence can form the cTAR and cpolyA stem-loops. Therefore, the transfer relies probably on annealing of folded molecules. This process is not well known at the molecular and structural level. The tools of molecular biology and three DNA-targeted probes were used to get insights into the annealing process. Our results were the following: 1) in the absence of NC, the cTAR DNA folds into two distinct conformations in equilibrium; 2) NC slightly shifts the equilibrium toward one conformation and binds tightly the internal loop of the cTAR hairpin; 3) NC is required for the formation of heteroduplex of the full-length ssDNA and 3' UTR; 4) the annealing of ssDNA to 3' UTR can be initiated from different sites in the presence of 0.2 mM MgCl2; 5) the full-length ssDNA folds into two conformations in equilibrium in 0.2 mM MgCl2 but mainly into one conformation in 2 mM MgCl2 ; 6) NC preferentially binds to the single-stranded region between the cTAR and cpolyA hairpins in ssDNA. This binding site probably plays an important role in the annealing of complementary DNA and RNA hairpins. This study helps us to gain insights into the reverse transcription process and the associated genetic recombination.

Page generated in 0.0454 seconds