• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analysis and implementation of robust numerical methods to solve mathematical models of HIV and Malaria co-infection

Elsheikh, Sara Mohamed Ahmed Suleiman January 2011 (has links)
There is a growing interest in the dynamics of the co-infection of these two diseases. In this thesis, firstly we focus on studying the effect of a distributed delay representing the incubation period for the malaria parasite in the mosquito vector to possibly reduce the initial transmission and prevalence of malaria. This model can be regarded as a generalization of SEI models (with a class for the latently infected mosquitoes) and SI models with a discrete delay for the incubation period in mosquitoes. We study the possibility of occurrence of backward bifurcation. We then extend these ideas to study a full model of HIV and malaria co-infection. To get further inside into the dynamics of the model, we use the geometric singular perturbation theory to couple the fast and slow models from the full model. Finally, since the governing models are very complex, they cannot be solved analytically and hence we develop and analyze a special class of numerical methods to solve them.
2

Analysis and implementation of robust numerical methods to solve mathematical models of HIV and Malaria co-infection

Elsheikh, Sara Mohamed Ahmed Suleiman January 2011 (has links)
There is a growing interest in the dynamics of the co-infection of these two diseases. In this thesis, firstly we focus on studying the effect of a distributed delay representing the incubation period for the malaria parasite in the mosquito vector to possibly reduce the initial transmission and prevalence of malaria. This model can be regarded as a generalization of SEI models (with a class for the latently infected mosquitoes) and SI models with a discrete delay for the incubation period in mosquitoes. We study the possibility of occurrence of backward bifurcation. We then extend these ideas to study a full model of HIV and malaria co-infection. To get further inside into the dynamics of the model, we use the geometric singular perturbation theory to couple the fast and slow models from the full model. Finally, since the governing models are very complex, they cannot be solved analytically and hence we develop and analyze a special class of numerical methods to solve them.
3

Analysis and implementation of robust numerical methods to solve mathematical models of HIV and Malaria co-infection

Elsheikh, Sara Mohamed Ahmed Suleiman January 2011 (has links)
Philosophiae Doctor - PhD / There is a growing interest in the dynamics of the co-infection of these two diseases. In this thesis, firstly we focus on studying the effect of a distributed delay representing the incubation period for the malaria parasite in the mosquito vector to possibly reduce the initial transmission and prevalence of malaria. This model can be regarded as a generalization of SEI models (with a class for the latently infected mosquitoes) and SI models with a discrete delay for the incubation period in mosquitoes. We study the possibility of occurrence of backward bifurcation. We then extend these ideas to study a full model of HIV and malaria co-infection. To get further inside into the dynamics of the model, we use the geometric singular perturbation theory to couple the fast and slow models from the full model. Finally, since the governing models are very complex, they cannot be solved analytically and hence we develop and analyze a special class of numerical methods to solve them. / South Africa

Page generated in 0.1024 seconds