1 |
Traffic Sign Detection and Recognition System for Intelligent VehiclesFeng, Jingwen January 2014 (has links)
Road traffic signs provide instructions, warning information, to regulate driver behavior. In addition, these signs provide a reliable guarantee for safe and convenient driving. The Traffic Sign Detection and Recognition (TSDR) system is one of the primary applications for Advanced Driver Assistance Systems (ADAS). TSDR has obtained a great deal of attention over the recent years. But, it is still a challenging field of image processing.
In this thesis, we first created our own dataset for North American Traffic Signs, which is still being updated. We then decided to choose Histogram Orientation Gradients (HOG) and Support Vector Machines (SVMs) to build our system after comparing them with some other techniques. For better results, we tested different HOG parameters to find the best combination. After this, we developed a TSDR system using HOG, SVM and our new color information extraction algorithm. To reduce time-consumption, we used the Maximally Stable Extremal Region (MSER) to replace the HOG and SVM detection stage. In addition, we developed a new approach based on Global Positioning System (GPS) information other than image processing. At last, we tested these three systems; the results show that all of them can recognize traffic signs with a good accuracy rate. The MSER based system is faster than the one using only HOG and SVM; and, the GPS based system is even faster than the MSER based system.
|
2 |
An Efficient Vision-Based Pedestrian Detection and Tracking System for ITS ApplicationsZuo, Tianyu January 2014 (has links)
In this thesis, a novel Pedestrian Protection System (PPS), composed of the Pedestrian Detection System (PDS) and the Pedestrian Tracking System (PTS), was proposed. The PPS is a supplementary application for the Advanced Driver Assistance System, which is used to avoid collisions between vehicles and pedestrians.
The Pedestrian Detection System (PDS) is used to detect pedestrians from near to
far ranges with the feature-classi er-based detection method (HOG + SVM). To achieve pedestrian detection from near to far ranges, a novel structure was proposed. The structure of our PDS consists of two cameras (called CS and CL separately). The CS is equipped with a short focal length lens to detect pedestrians in near-to-mid range; and, the CL is equipped with a long focal length lens to detect pedestrians in mid-to-far range. To accelerate the processing speed of pedestrian detection, the parallel computing capacity of GPU was utilized in the PDS. The synchronization algorithm is also introduced to synchronize the detection results of CS and CL. Based on the novel pedestrian detection structure, the detection process can reach a distance which is more than 130 meters away without decreasing detection accuracy. The detection range can be extended more than
100 meters without decreasing the processing speed of pedestrian detection. Afterwards, an algorithm to eliminate duplicate detection results is proposed to improve the detection accuracy.
The Pedestrian Tracking System (PTS) is applied following the Pedestrian Detection
System. The PTS is used to track the movement trajectory of pedestrians and to predict the future motion and movement direction. A C + + class (called pedestrianTracking class, which is short for PTC) was generated to operate the tracking process for every detected pedestrian. The Kalman lter is the main algorithm inside the PTC. During the operation of PPS, the nal detection results of each frame from PDS will be transmitted to the PTS to enable the tracking process. The new detection results will be used to update the existing tracking results in the PTS. Moreover, if there is a newly detected pedestrian, a new process will be generated to track the pedestrian in the PTS. Based on the tracking results in PTS, the movement trajectory of pedestrians can be obtained and their future motion and movement direction can be predicted. Two kinds of alerts are generated based on the predictions: warning alert and dangerous alert. These two alerts represent di erent situations; and, they will alert drivers to the upcoming situations. Based on the predictions and alerts, the collisions can be prevented e ectively. The safety
of pedestrians can be guaranteed.
|
3 |
Efektivnost hlubokých konvolučních neuronových sítí na elementární klasifikační úloze / Efficiency of deep convolutional neural networks on an elementary classification taskPrax, Jan January 2021 (has links)
In this thesis deep convolutional neural networks models and feature descriptor models are compared. Feature descriptors are paired with suitable chosen classifier. These models are a part of machine learning therefore machine learning types are described in this thesis. Further these chosen models are described, and their basics and problems are explained. Hardware and software used for tests is listed and then test results and results summary is listed. Then comparison based on the validation accuracy and training time of these said models is done.
|
4 |
Detekce a rozpoznání dopravních značek v obraze / Detection and Recognition of Traffic Signs in ImageSpáčil, Pavel January 2011 (has links)
This work focuses on classification and recognition of traffic signs in image. It describes briefly some used methods a deeply describes chosen system including extensions and method for creating models needed for classification. There's described implementation of library and demonstration program including important pieces of knowledge discovered during development. There're also results of some experiments and possible enhancements in conclusion.
|
5 |
Měření výšky postavy v obraze / Height Measurement in Digital ImageOlejár, Adam January 2015 (has links)
The aim of this paper is a summary of the theory necessary for a modification, detection of person and the height calculation of the detected person in the image. These information were then used for implementation of the algoritm. The first half reveals teoretical problems and solutions. Shows the basic methods of image preprocessing and discusses the basic concepts of plane and projective geometry and transformations. Then describes the distortion, that brings into the picture imperfections of optical systems of cameras and the possibilities of removing them. Explains HOG algorithm and the actual method of calculating height of person detected in the image. The second half describes algoritm structure and statistical evaluation.
|
6 |
Porovnání klasifikačních metod / Comparison of Classification MethodsDočekal, Martin January 2019 (has links)
This thesis deals with a comparison of classification methods. At first, these classification methods based on machine learning are described, then a classifier comparison system is designed and implemented. This thesis also describes some classification tasks and datasets on which the designed system will be tested. The evaluation of classification tasks is done according to standard metrics. In this thesis is presented design and implementation of a classifier that is based on the principle of evolutionary algorithms.
|
Page generated in 0.0226 seconds