1 |
Phosphoregulation of photorespiratory enzymes in Arabidopsis thaliana / Phosphorégulation de la photorespiration chez Arabidopsis thalianaLiu, Yanpei 05 February 2019 (has links)
La photorespiration est un processus essential chez tous les organismes photosynthétiques. Elle est déclenchée par l’activité oxygénase de la Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase (RuBisCO) menant à la production d’une molécule de 3-phosphoglycerate and une molécule de 2-phosphoglycolate (2PG). Le 2PG est toxique et sera recyclé par la photorespiration qui implique huit principales enzymes et prend place dans les chloroplastes, les peroxysomes, les mitochondries et le cytosol. Bien que la photorespiration aboutisse à une efficacité réduite de l’assimilation du CO₂ photosynthétique et soit considérée comme un processus inutile, le phénotype de croissance des mutants d’enzymes photorespiratoires (croissance réduite, chlorose) reflète l’importance de ce processus dans la croissance et le développement normal car il interagit avec plusieurs voies métaboliques primaires. Les données actuelles montrent que sept des huit principales enzymes photorespiratoires pourraient être phosphorylées et qu’ainsi la phosphorylation pourrait être un élément régulateur essentiel du cycle photorespiratoire. Afin de mieux comprendre la régulation du cycle photorespiratoire, nous avons étudié l’effet d’une phosphorylation/ absence de phosphorylation sur la sérine hydroxyméthyltransférase 1 mitochondriale (SHMT1) et de l’hydroxypyruvate réductase peroxisomale en utilisant des versions de ces enzymes mimant une phosphorylation (sérine ou la thréonine mutée en acide aspartique) ou une absence de phosphoryaltion (sérine ou thréonine mutée en alanine).Deux sites sont phosphorylés chez HPR1: S229 et T335. La mutation de ces sites montre que seule la version mimant une phosphorylation sur le site T335 (HPR1 T335D) entraîne une activité réduite de la protéine recombinante HPR1. Ce résultat a été confirmé in vivo puisque le mutant Arabidopsis hpr1 exprimant HPR1 T33D était incapable de totalement complémenter le phénotype photorespiratoire du mutant hpr1.Par complémentation du mutant d’Arabidopsis shm1-1 par une forme sauvage de SHMT1, d’une version mimant (S31D) ou non (S31A) une phosphorylation, les résultats ont montré que toutes les formes de SHMT1 pouvaient presque totalement complémenter le phénotype de croissance de shm1-1. Cependant, chaque ligne transgénique n'avait que 50% de l'activité de SHMT normale. En réponse à un stress dû au sel ou à la sécheresse, les lignées Compl-S31D ont montré un déficit de croissance plus accentué que les autres lignées transgéniques. Cette sensibilité au sel semble refléter les quantités réduites de protéines SHMT1-S31D ainsi qu’une activité plus faible ayant un impact sur le métabolisme des feuilles, entraînant une sous-accumulation de proline et une suraccumulation de polyamines. La mutation S31D de la protéine SHMT1 a également entraîné une réduction de la fermeture stomatique induite par le sel et l'ABA. Ainsi, nos résultats soulignent l’importance du maintien de l’activité du SHMT1 photorespiratoire dans des conditions de stress dû au sel et à la sécheresse et indiquent que la phosphorylation de SHMT1 S31 pourrait être impliquée dans la modulation de la stabilité de la protéine SHMT1. / Photorespiration is an essential process in oxygenic photosynthetic organisms, and it is triggered by the oxygenase activity of Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase (RuBisCO) to produce one molecular 3-phosphoglycerate and one molecular 2-phosphoglycolate. The toxic 2-PG is recycled by the photorespiratory pathway which includes eight core enzymes and takes place in chloroplasts, peroxisomes and metochondria and cytosol. Although the photorespiration leads to a reduced efficiency of the photosynthetic CO₂ assimilation and thereby is considered as a wasteful process, the growth phenotype of the photorespiratory enzymes can reflect the importance of this process in normal growth and development of air-grown plants. Normally, for most photorespiratory enzyme mutants, they exhibit small, chlorotic plants sometimes non-viable in air which are not observed when the mutants are grown under high CO₂ condition that limit the photorespiration by reducing the RuBisCO oxygenase activity. Photorespiratory cycle interacts with several major primary metabolic pathways, thus is a highly regulated and extensive works. Current data show that seven of eight core photorespiratory enzymes could be phosphorylated and the protein phosphorylation seems to be a critical regulatory component of the photorespiratory cycle. In order to better understand the regulation of the photorespiratory cycle, we explored the effect of SHMT1 and HPR1 phosphorylation/non-phosphorylation events on plant physiology and metabolism by several methods: Site-directed mutagenesis assay, complementation assay, activity assay, stomatal aperture assays, plant salt/drought resistance assays, metabolites measurement, gas exchange measurement. The results show the phosphorylation mimicking version of HPR1 at T335 results to a less HPR1 activity and retarded growth at the ambient air condition. For the phosphorylation mimicking version of SHMT1 at S31 resulted in a less stability leading to a reduced resistance to drought and salt stress. The decline of resistance against abiotic stress was mainly due to impairment in the closure of stomata which were unable to respond properly to ABA probably because of a default in the PLC pathway. So there results indicate that the phosphorylation of SHTM1 leads to a negative effect for the plant growth especially under stress condition. Thus, we propose that the SHMT1 can be phosphorylated at a basic level under normal growth conditions, once the photorespiratory flux is increased such under salt stress condition, the SHMT1 should be dephosphorylated to stabilize SHMT1 and sustain a high photorespiration flux to cope with reduced CO₂ availability.
|
2 |
Etude de la régulation du métabolisme des ARN messagers chez la levure Saccharomyces cerevisiae / Study of the regulation of messenger RNA metabolism in the yeast Saccharomyces cerevisiaeBretes Rodrigues, Hugo 25 September 2012 (has links)
Au cours de la transcription, plusieurs facteurs sont assemblés sur les ARN messagers pour former des Ribonucléoparticules de messagers (mRNPs), et contrôler leur maturation, leur stabilité et leur devenir dans le cytoplasme. Afin d’assurer la production de protéines fonctionnelles, la cellule dispose de plusieurs mécanismes de régulation et de contrôle de qualité assurant la fidélité de l’information génétique transmise au niveau ARN messager et protéine.Chez la levure Saccharomyces cerevisiae, un ensemble de protéines associées au pore nucléaire, incluant la SUMO protéase Ulp1, a été impliqué dans un contrôle de qualité des mRNPs régulant leur export vers le cytoplasme. Ces données suggéraient que l’export des ARN messagers pourrait être contrôlé par la modification post-traductionnelle par le polypeptide SUMO d’un ou de plusieurs effecteurs au sein des mRNPs. Afin de mieux comprendre ces processus, nous avons combiné plusieurs approches visant à identifier ces protéines SUMOylées. En particulier, nous avons mis en place un crible protéomique visant à identifier les protéines dont l’association sur les mRNPs dépend d’Ulp1. Ce crible nous a permis de mettre en évidence une régulation par Ulp1 de l’assemblage du complexe THO sur les ARN messagers. Ce complexe, recruté sur les gènes et les mRNPs, est connu pour contribuer à l’efficacité de la transcription, prévenir l’instabilité génétique liée à la formation d’hybrides ADN matrice – ARN messager (dénommés R-loops) et permettre l’export des mRNPs. En combinant l’analyse biochimique de différentes catégories de mRNPs à des expériences d’immunoprécipitation de l’ARN, nous avons montré que l’activité de la SUMO-protéase Ulp1 est nécessaire à l’association du complexe THO sur différents ARN messagers. De plus, nous avons montré que le complexe THO est SUMOylé sur le domaine C-terminal de sa sous-unité Hpr1, et que Ulp1 régule cette modification. Enfin, cet événement de SUMOylation du complexe THO régule son association avec les mRNPs. L’analyse fonctionnelle de mutants affectant la SUMOylation du complexe THO révèle que des défauts de SUMOylation de ce complexe compromettent ses fonctions dans la transcription sans affecter l’export. De manière intéressante, nous avons observé que la présence d’un intron sur des rapporteurs LacZ diminue la sensibilité de leur expression à des inactivations ou des défauts de SUMOylation du complexe THO. Ce phénotype entraine une augmentation relative des niveaux d’ARN pré-messagers dans ces mutants, un phénomène rendant compte de la fuite cytoplasmique apparente d’ARN non épissés précédemment observée dans le mutant ulp1. L’ensemble de ces données caractérise pour la première fois un rôle de la SUMOylation dans le contrôle de l’assemblage et du devenir cellulaire des mRNPs. / During transcription, several factors associate with mRNA to form messenger Ribonucleoparticles (mRNPs), thereby controlling their processing, their stability, and their cytoplasmic fate. To ensure the production of functional proteins from these mRNAs, eukaryotic cells contain numerous regulatory and quality control systems in order to prevent aberrant mRNP accumulation and export.In the yeast Saccharomyces cerevisiae, several nuclear pore associated proteins, including the SUMO isopeptidase Ulp1, have been involved in a mRNP quality control regulating their nuclear export. These data suggested that post-translational modification by SUMO of one or several mRNP components could regulate mRNA export. In order to understand the molecular mechanisms underlying this process, we undertook several approaches to identify these SUMOylated factors. In particular, we have set up a proteomic screen to identify mRNP components whose assembly onto mRNPs depends on Ulp1 activity.This proteomic survey revealed an Ulp1-dependent regulation of THO complex assembly to mRNPs. This complex, recruited to transcribed genes and mRNPs, is known to regulate transcription elongation by preventing DNA-RNA hybrids formation (termed R-loops), and mRNP export. Through a combination of proteomic analysis of mRNPs assembled in Ulp1 mutant cells, with RNA / chromatin immunoprecipitation experiments, we demonstrate that Ulp1 controls specifically the recruitment of the THO complex within mRNPs. SUMOylation analysis further reveals that Ulp1 targets the THO complex subunit Hpr1 on its C-terminal domain for deSUMOylation. We further show that this SUMOylation event regulates THO complex association within mRNPs. Finally, functional analysis reveal that impaired deSUMOylation of the THO complex do not affect mRNP export, but disturbs expression of LacZ reporter genes, a phenotype classically associated with THO complex dysfunction. Intriguingly, the transcriptional effect of inactivation or impaired deSUMOylation of the THO complex on LacZ expression is alleviated by the presence of an intron, providing a molecular basis for previously reported pre-mRNA leakage phenotypes. Our data therefore unravels for the first time a function of SUMO in the control of mRNP assembly contributing to proper mRNP homeostasis.
|
Page generated in 0.0148 seconds