• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterization of Geometrically Necessary Dislocation Content with EBSD-Based Continuum Dislocation Microscopy

Ruggles, Tim 01 February 2015 (has links) (PDF)
Modeling of plasticity is often hampered by the difficulty in accurately characterizing dislocationdensity on the microscale for real samples. It is particularly difficult to resolve measureddislocation content onto individual dislocation systems at the length scales most commonly of interestin plasticity studies. Traditionally, dislocation content is analyzed at the continuum levelusing the Nye tensor and the fundamental relation of continuum dislocation theory to interpret informationmeasured by diffraction techniques, typically EBSD or High Resolution EBSD. In thiswork the established Nye-Kroner method for resolving measured geometrically necessary dislocationcontent onto individual slip systems is assessed and extended. Two new methods are alsopresented to relieve the ambiguity of the Nye-Kroner method. One of these methods uses modifiedclassical dislocation equations to bypass the Nye-Kroner relation, and the other estimates the bulkdislocation density via the entry-wise one-norm of the Nye tensor. These methods are validatedvia a novel simulation of distortion fields around continuum fields of dislocation density based onclassical lattice mechanics and then applied to actual HR-EBSD scans of a micro-indented singlecrystals of nickel and tantalum. Finally, a detailed analysis of the effect of the spacing betweenpoints in an EBSD scan (which is related to the step size of the numerical derivatives used in EBSDdislocation microscopy) on geometrically necessary dislocation measurements is conducted.

Page generated in 0.0186 seconds