1 |
Etude des propriétés hygroscopiques des aérosols atmosphériquesMichaud, Vincent 10 December 2009 (has links) (PDF)
Les particules d'aérosols jouent un rôle prépondérant sur le climat de la Terre, notamment à travers l'absorption et la diffusion du rayonnement solaire. L'hygroscopicité de ces particules est un paramètre important qui décrit leur capacité à augmenter leurs diamètres par condensation de vapeur d'eau en fonction de l'humidité relative. Ce travail a pour but d'étudier l'hygroscopicité des particules atmosphériques grâce à un système HTDMA développé au laboratoire. Notre travail s'articule autour de mesures réalisées en zone source (Marseille, Grenoble) et en zone de fond (puy de Dôme, 1465m). L'hygroscopicité mesurée sur ces sites est globalement plus importante en zone de fond qu'en zone source. Cette information, appuyée par nos mesures en laboratoire, met en évidence l'impact du phénomène de "vieillissement de l'aérosol sur son hygroscopicité par condensation de composés volatils à sa surface ou par formation de composés secondaires par réaction en phase aqueuse en nuage. La spécificité de cette étude est également due au couplage des propriétés hygroscopiques avec la composition chimique des aérosols mesurés par AMS. Ce couplage nous a permis de montrer, grâce à la théorie ZSR, que l'hygroscopicité de l'aérosol pouvait être calculée à partir de la connaissance de sa composition chimique, avec une précision de 5% en moyenne, en prenant en compte l'état de mélange de l'aérosol. Enfin, nos résultats montrent que l'aérosol est toujours présent sous forme de mélange externe, ce qui constitue une information importante pour évaluer l'impact radiatif (direct ou indirect) de l'aérosol
|
2 |
Quantifying compositional impacts of ambient aerosol on cloud formationLance, Sara 14 November 2007 (has links)
It has been historically assumed that most of the uncertainty associated with the aerosol indirect effect on climate can be attributed to the unpredictability of updrafts. We assess the sensitivity of cloud droplet number density to realistic variations in aerosol chemical properties and to variable updraft velocities using a 1-dimensional cloud parcel model. The results suggest that aerosol chemical variability may be as important to the aerosol indirect effect as the effect of unresolved cloud dynamics, especially in polluted environments. We next used a continuous flow streamwise thermal gradient Cloud Condesnation Nuclei counter (CCNc) to study the water-uptake properties of the ambient aerosol, by exposing an aerosol sample to a controlled water vapor supersaturation and counting the resulting number of droplets. The heat transfer properties and droplet growth within the CCNc were first modeled and experimentally characterized. We describe results from the MIRAGE field campaign at a ground-based site during March, 2006. Size-resolved CCN activation spectra and hygroscopic growth factor distributions of the ambient aerosol in Mexico City were obtained, and an analytical technique was developed to quantify a probability distribution of solute volume fractions for the CCN, as well as the aerosol mixing-state. The CCN were shown to be much less CCN active than ammonium sulfate, with water uptake properties more consistent with low molecular weight organic compounds. We also describe results from the GoMACCS field study, an airborne field campaign in Houston, Texas during August-September, 2006. GoMACCS tested our ability to predict CCN for highly polluted conditions with limited chemical information. Assuming the particles were composed purely of ammonium sulfate, CCN closure was obtained with a 10% overprediction bias on average for CCN concentrations ranging from less than 100 cm-3 to over 10,000 cm-3, but with on average 50% variability. Assuming measured concentrations of organics to be internally mixed and insoluble tended to reduce the overprediction bias for less polluted conditions, but led to underprediction bias in the most polluted conditions. Comparing the two campaigns, it is clear that the chemistry of the particles plays an important role in our ability to predict CCN concentrations.
|
Page generated in 0.0276 seconds