• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Monte Carlo Simulations of Grid Walled Proportional Counters with Different Site Sizes for HZE Radiation

Liu, Haifeng 2012 May 1900 (has links)
Tissue-equivalent proportional counters are frequently used to measure dose and dose equivalent in cosmic radiation fields that include high-Z, high-energy (HZE) particles. The fact that particles with different stopping powers can produce the same energy deposition in the same detector means that the measure of lineal energy cannot provide enough information to evaluate the equivalent dose due to HZE particles. To characterize incident particles by mass and velocity, a multiple-detector system composed of three tissue-equivalent proportional counters simulating different size tissue volumes was proposed to be built. This system took advantage of the well-known fact that lineal energy (y) of a HZE particle depends on the site size, as well as the particle mass and energy. Monte Carlo calculations were used to evaluate lineal energy, using GEANT4, in grid-walled (wall-less) proportional counters with simulated unit density site diameter of 0.1, 0.5 and 2.5 micrometers in a uniform HZE particle field. Uniform beams of 1000 MeV/n and 100 MeV/n 56Fe26+, 28Si14+, 16O8+, 12C6+, 4He2+ ions and proton particles bombarding the detectors were simulated. The results of the calculations were used to determine how much additional information about particle charge and velocity could be obtained from such a detector system. Comparison of simulation results with those of walled detectors was included in the study to illustrate the wall effect. The results shows that the detector system is capable of characterizing HZE particles in a mixed unknown field based on the lineal energy spectra as well as the calculated mean lineal energy. This suggests that it may be practical to use such a system to measure the average particle velocity of HZE particles in space. The parameters used in the simulation are also good references for detector construction. There is only limited experimental data for lineal energy resulting from a large uniform field of HZE particles incident on a wall-less detector. However, the Monte Carlo results are consistent with the experimental data available.
2

Monte Carlo simulations of solid walled proportional counters with different site size for HZE radiation

Wang, Xudong 15 May 2009 (has links)
Characterizing high z high energy (HZE) particles in cosmic radiation is of importance for the study of the equivalent dose to astronauts. Low pressure, tissue equivalent proportional counters (TEPC) are routinely used to evaluate radiation exposures in space. A multiple detector system composed of three TEPC of different sizes was simulated using the Monte-Carlo software toolkit GEANT4. The ability of the set of detectors to characterize HZE particles, as well as measure dose, was studied. HZE particles produce energetic secondary electrons (-rays) which carry a significant fraction of energy lost by the primary ion away from its track. The range and frequency of these delta rays depends on the velocity and charge of the primary ion. Measurements of lineal energy spectra in different size sites will differ because of these delta ray events and may provide information to characterize the incident primary particle. Monte Carlo calculations were accomplished, using GEANT4, simulating solid walled proportional detectors with unit density site diameter of 0.1, 0.5 and 2.5 µm in a uniform HZE particle field. The simulated spherical detectors have 2 mm thick tissue equivalent walls. The uniform beams of 1 GeV/n, 500 MeV/n and 100 MeV/n 56Fe, 28Si, 16O, 4He and proton particles were used to bombard the detector. The size effect of such a detector system was analyzed with the calculation results. The results show that the y vs. yf(y) spectrum differs significantly as a function of site size. From the spectra, as well as the calculated mean lineal energy, the simulated particles can be characterized. We predict that the detector system is capable of characterizing HZE particles in a complex field. This suggests that it may be practical to use such a system to measure the average particle velocity as well as the absorbed dose delivered by HZE particles in space. The parameters used in the simulation are also good references for detector construction. characterizing HZE particles in a complex field. This suggests that it may be practical to use such a system to measure the average particle velocity as well as the absorbed dose delivered by HZE particles in space. The parameters used in the simulation are also good references for detector construction.
3

Space radiation-induced bystander effect : kinetics of biologic responses, mechanisms, and significance of secondary radiations

Gonon, Géraldine 12 December 2011 (has links) (PDF)
Widespread evidence indicates that exposure of cell cultures to α particles results in significant biological changes in both the irradiated and non-irradiated bystander cells in the population. The induction of non-targeted biological responses in cell cultures exposed to low fluences of high charge (Z) and high energy (E) particles is relevant to estimates of the health risks of space radiation and to radiotherapy. Here, we investigated the mechanisms underlying the induction of stressful effects in confluent normal human fibroblast cultures exposed to low fluences of 1000 MeV/u iron ions (linear energy transfer (LET) ~151 keV/µm), 600 MeV/u silicon ions (LET ~50 keV/µm) or 290 MeV/u carbon ions (LET ~13 keV/µm). We compared the results with those obtained in cell cultures exposed, in parallel, to low fluences of 0.92 MeV/u α particles (LET ~109 keV/µm).Induction of DNA damage, changes in gene expression, protein carbonylation and lipid peroxidation during 24 h after exposure of confluent cultures to mean doses as low as 0.2 cGy of iron or silicon ions strongly supported the propagation of stressful effects from irradiated to bystander cells. At a mean dose of 0.2 cGy, only ~1 and 3 % of the cells would be targeted through the nucleus by an iron or silicon ion, respectively. Within 24 h post-irradiation, immunoblot analyses revealed significant increases in the levels of phospho-TP53 (serine 15), p21Waf1 (also known as CDKN1A), HDM2, phospho-ERK1/2, protein carbonylation and lipid peroxidation. The magnitude of the responses suggested participation of non-targeted cells in the response. Furthermore, when the irradiated cell populations were subcultured in fresh medium shortly after irradiation, greater than expected increases in the levels of these markers were also observed during 24 h. Together, the results imply a rapidly propagated and persistent bystander effect. In situ analyses in confluent cultures showed 53BP1 foci formation, a marker of DNA damage, in more cells than expected based on the fraction of cells traversed through the nucleus by an iron or silicon ion. The effect was expressed as early as 15 min after exposure, peaked at 1 h and decreased by 24 h. A similar tendency occurred after exposure to a mean absorbed dose of 0.2 cGy of 3.7 MeV α particles, but not after 0.2 cGy of 290 MeV/u carbon ions.Analyses in dishes that incorporate a CR-39 solid state nuclear track detector bottom identified the cells irradiated with iron or silicon ions and further supported the participation of bystander cells in the stress response. Mechanistic studies indicated that gap junction intercellular communication, DNA repair, and oxidative metabolism participate in the propagation of the induced effects.We also considered the possible contribution of secondary particles produced along the primary particle tracks to the biological responses. Simulations with the FLUKA multi-particle transport code revealed that fragmentation products, other than electrons, in cells cultures exposed to HZE particles comprise <1 % of the absorbed dose. Further, the radial spread of dose due to secondary heavy ion fragments is confined to approximately 10-20 µm Thus, the latter are unlikely to significantly contribute to the stressful effects in cells not targeted by primary HZE particles.
4

Space radiation-induced bystander effect : kinetics of biologic responses, mechanisms, and significance of secondary radiations / Effet de proximité induit par ions lourds d'origine cosmique : cinétique des réponses biologiques, mécanismes et importance des radiations secondaires

Gonon, Géraldine 12 December 2011 (has links)
De nombreuses études ont montré que l'exposition de cultures cellulaires à des particules α conduit à des changements biologiques importants autant dans les cellules irradiées que dans les cellules bystander non-irradiées. L'étude des réponses biologiques non-ciblées dans des cultures cellulaires exposées à de faibles fluences d’ions lourds permet d’estimer les risques pour la santé du rayonnement spatial et de la radiothérapie. Nous avons caractérisé les mécanismes sous-jacents de l'induction d'effets stressants dans des cultures confluentes de fibroblastes normaux humains exposés à de faibles fluences d’ions fer de 1000 MeV/u (transfert d'énergie linéique (TEL) ~151 keV/µm), d’ions silicium de 600 MeV/u (TEL ~50 keV/µm) ou d’ions carbone de 290 MeV/u (TEL ~13 keV/µm). Nous avons comparé ces résultats avec ceux obtenus dans des cultures cellulaires exposées, en parallèle, à de faibles fluences de particules α de 0,92 MeV/u (TEL ~109 keV/µm). L'induction de dommages à l'ADN, les changements dans l'expression des gènes, la carbonylation des protéines et la peroxydation lipidique durant les 24 h suivant l'exposition de cultures confluentes à de faibles doses (0,2 cGy et plus) d’ions fer ou d'ions silicium ont très largement contribué à la propagation d’effets stressants des cellules irradiées aux cellules bystander non-irradiées. Pour une dose moyenne de 0,2 cGy, seules ~1 et 3 % des cellules seraient irradiées dans le noyau par un ion, respectivement, fer ou silicium. Les immunoblots ont révélés des augmentations significatives des niveaux de phospho-TP53 (sérine 15), p21Waf1 (CDKN1A), HDM2, phospho-ERK1/2, de carbonylation des protéines et de peroxydation lipidique dans les 24 h suivant l’exposition. L'ampleur de ces réponses suggère la participation de cellules non ciblées dans les effets observés. De plus, lorsque les populations cellulaires irradiées ont été ré-ensemencées dans un milieu de culture frais peu après l'irradiation, les niveaux de ces marqueurs ont aussi augmentés durant 24 h. Ensemble, ces résultats montrent un effet rapidement propagé et persistant. Des analyses in situ réalisées dans des cultures cellulaires confluentes ont montré que la formation de foyers de la protéine 53BP1, marqueur de dommages à l'ADN, touchait un nombre de cellules plus important que celui auguré par la fraction de cellules traversées dans le noyau par un ion fer ou silicium. Cet effet est exprimé dès 15 min suivant l'exposition, atteint son maximum 1 h après l’exposition puis diminue jusqu’à 24 h. Une tendance similaire s'est produite après exposition à une dose moyenne absorbée de 0,2 cGy de particules α de 3,7 MeV, mais non après 0,2 cGy d’ions carbone de 290 MeV/u.Des analyses utilisant des puits de cultures intégrant une fine épaisseur de CR-39, détecteur solide de traces nucléaires, et permettant ainsi l’identification des cellules irradiées aux ions fer ou silicium, confirment la participation de cellules bystander dans la réponse au stress. Des études mécanistiques ont, de plus, indiqué que les jonctions gap permettant la communication intercellulaire, certaines voies de la réparation de l’ADN, ainsi que le métabolisme oxydatif participent à la propagation des effets non ciblés induit par des radiations de haut TEL. Nous avons également examiné la contribution possible des particules secondaires produites le long des traces d’ions primaires dans les réponses biologiques. Les simulations réalisées avec le code de transport de particules FLUKA ont révélé que la dose due aux produits de fragmentation, autres que les électrons, est inférieure à 1 % de la dose absorbée dans les cultures cellulaires exposées à des ions lourds. De plus, la dose radiale des ions lourds secondaires est limitée à ~10-20 µm autour de l’ion primaire. Ainsi, ces derniers sont peu susceptibles de contribuer de manière significative à la réponse biologique observée dans des cellules non ciblées par des ions lourds primaires / Widespread evidence indicates that exposure of cell cultures to α particles results in significant biological changes in both the irradiated and non-irradiated bystander cells in the population. The induction of non-targeted biological responses in cell cultures exposed to low fluences of high charge (Z) and high energy (E) particles is relevant to estimates of the health risks of space radiation and to radiotherapy. Here, we investigated the mechanisms underlying the induction of stressful effects in confluent normal human fibroblast cultures exposed to low fluences of 1000 MeV/u iron ions (linear energy transfer (LET) ~151 keV/µm), 600 MeV/u silicon ions (LET ~50 keV/µm) or 290 MeV/u carbon ions (LET ~13 keV/µm). We compared the results with those obtained in cell cultures exposed, in parallel, to low fluences of 0.92 MeV/u α particles (LET ~109 keV/µm).Induction of DNA damage, changes in gene expression, protein carbonylation and lipid peroxidation during 24 h after exposure of confluent cultures to mean doses as low as 0.2 cGy of iron or silicon ions strongly supported the propagation of stressful effects from irradiated to bystander cells. At a mean dose of 0.2 cGy, only ~1 and 3 % of the cells would be targeted through the nucleus by an iron or silicon ion, respectively. Within 24 h post-irradiation, immunoblot analyses revealed significant increases in the levels of phospho-TP53 (serine 15), p21Waf1 (also known as CDKN1A), HDM2, phospho-ERK1/2, protein carbonylation and lipid peroxidation. The magnitude of the responses suggested participation of non-targeted cells in the response. Furthermore, when the irradiated cell populations were subcultured in fresh medium shortly after irradiation, greater than expected increases in the levels of these markers were also observed during 24 h. Together, the results imply a rapidly propagated and persistent bystander effect. In situ analyses in confluent cultures showed 53BP1 foci formation, a marker of DNA damage, in more cells than expected based on the fraction of cells traversed through the nucleus by an iron or silicon ion. The effect was expressed as early as 15 min after exposure, peaked at 1 h and decreased by 24 h. A similar tendency occurred after exposure to a mean absorbed dose of 0.2 cGy of 3.7 MeV α particles, but not after 0.2 cGy of 290 MeV/u carbon ions.Analyses in dishes that incorporate a CR-39 solid state nuclear track detector bottom identified the cells irradiated with iron or silicon ions and further supported the participation of bystander cells in the stress response. Mechanistic studies indicated that gap junction intercellular communication, DNA repair, and oxidative metabolism participate in the propagation of the induced effects.We also considered the possible contribution of secondary particles produced along the primary particle tracks to the biological responses. Simulations with the FLUKA multi-particle transport code revealed that fragmentation products, other than electrons, in cells cultures exposed to HZE particles comprise <1 % of the absorbed dose. Further, the radial spread of dose due to secondary heavy ion fragments is confined to approximately 10-20 µm Thus, the latter are unlikely to significantly contribute to the stressful effects in cells not targeted by primary HZE particles.

Page generated in 0.0125 seconds