• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Synthèse et étude de ligands hydroxamates cycliques dérivés des sidérophores naturels pour la complexation sélective des actinides / Synthesis and investigation of cyclic hydroxamate ligands derived from natural siderophores for selective complexation of actinides

Jewula, Pawel 25 September 2013 (has links)
Pas de résumé en français / The goal of this research was the synthesis and spectroscopic, structural andphysical-chemical characterization of cyclic 6- and 7-membered hydroxamicacids, a tetrahydroxamic calix[4]arene-based tetrapodal receptor, and their metalcomplexes with trivalent and tetravalent metal cations. They were characterizedby several techniques such as 1H and 13C NMR, IR, and mass spectroscopies,single crystal X-ray analysis, and potentiometry. Cyclic hydroxamic acids arefound in a few mix siderophores but their coordination properties were stillunknown. The structural features of metal complexes formed with Fe(III),Ga(III), Ce(IV), Zr(IV), Hf(IV), U(IV) and U(VI) have been investigated both inthe solid state and in solution. The synthesis and complexation studies of anoriginal calix[4]arene-based tetrapodal receptor is described. Reactionparameters for all key steps in the synthetic route have been optimized. Thesingle X-ray crystal analysis of benzyl-protected receptor was obtained.Complexation studies with zirconium(IV) and hafnium(IV) evidenced theformation of two metal two ligand complexes rather than 1:1 species, whichwere shown to interact in solution with a third alkali cation

Page generated in 0.0359 seconds