• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Ground Antenna for Slim Mobile Communication Devices

Lin, Wun-Jian 13 June 2012 (has links)
In this thesis, two types of handset antenna design respectively for dual-band GSM850/1900 operation and seven¡Vband LTE/WWAN operation are presented. The proposed antennas can achieve decreased antenna size and enhanced operating bandwidth by shaping the system ground plane of the handset. The seven-band LTE/WWAN antenna is printed on the system circuit board with good radiation characteristics and occupies a small size of 24.5 x 10 mm2. At first, we propose a half-loop antenna structure which integrates its facing edge of the system ground plane as the resonant path of the antenna. In this case, the required length of the half-loop antenna structure is only about a half compared with the traditional loop antenna. Next, to enhance the operating bandwidth of the antenna, a parasitic shorted monopole strip is added and a shaped system circuit board is used. The shaped system circuit board can integrate the battery with the circuit board to help reduce the thickness of handset. Also, much enhanced operating bandwidth for the lower band can be obtained, owing to the enhanced surface current excitation in the system ground plane resulting from properly shaping the system circuit board. Effects of the user¡¦s head and hand on the proposed antenna are studied, and the simulated SAR and HAC results are also analyzed for bio-compatibility issue.

Page generated in 0.0773 seconds