• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 1
  • 1
  • Tagged with
  • 21
  • 21
  • 8
  • 8
  • 7
  • 6
  • 5
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Synthesis, Self-assembly and Regrowth of Lead Halide Perovskite Nanocrystals

Liu, Jiakai 28 October 2020 (has links)
Over the last decade, impressive development in lead halide perovskites (LHPs) have made them leading candidate materials for photovoltaics (PVs), X-ray scintillators, and light-emitting diodes (LEDs). The success of LHPs NCs in lighting and display applications is mainly originated from their high photoluminescence quantum yield (PLQY), narrow emission, sizable bandgap, and cost-effective fabrication. Consequently, a comprehensive understanding of the design principles of LHP NCs will fuel further innovations in their optoelectronic applications. This dissertation centers on the synthesis and self-assembly of LHP NCs. At first, we investigate the capability of colloidal synthetic routine to engineer the shape, size, and dimensionality of the resulting LHPs NCs (chapter 2), including 0D nanospheres, 2D nanoplates, and 3D nanocubes. Starting from the LHPs NCs, nanoplates (chapter 3), nanowires (chapter 4), and superstructures (chapter 5) are successfully achieved via various self-assembly strategies. In chapter 3, we present a liquid-air interfaces-assisted self-assembly technique to obtain micro-scale CsPbBr3 nanoplates from as-synthesized nanoscale NCs. The AC-HRTEM offered an atomic-level observation during the structural evolution and revealed an oriented attachment-mediated assembly mechanism. The assembled CsPbBr3 nanoplates exhibited ultrahigh stability under X-ray energy dispersive spectroscopy (EDS) mapping conditions (300-kV electron beam), and the first atomic-resolution EDS elemental mapping data of LHP NCs were acquired. In chapter 4, we demonstrate an efficient green-chemistry approach for the self-assembly of CsPbBr3 NCs into 1D nanowires and nanobelts via the light induction. As an elegant and promising green-chemistry approach, light-induced self-assembly represents a rational method for designing perovskites. In chapter 5, we will explore the self-assembly of CsPbBr3 NCs into superstructures to overcome the ‘green gap’ to achieve a pure green emission with high PLQY for realizing next-generation vivid displays. In summary, we systematically investigated the mechanisms of LHP NC self-assembly, the kinetics of their morphological evolution and phase transitions, and driving forces that govern the self-assembly process. The assembled LHP NCs manifest desirable properties (e.g., superfluorescence, improved photoluminescence lifetime, enhanced stability against moisture, light, electron-beam irradiation, and thermal-degradation) that translate into dramatic improvements in device performance.
2

Halide Perovskites: Materials Properties and Emerging Applications

Haque, Mohammed 11 August 2020 (has links)
Semiconducting materials have emerged as the cornerstone of modern electronics owing to their extensive device applications. There is a continuous quest to find cost-effective and low-temperature compatible materials for future electronics. The recent reemergence of solution processable halide perovskites have taken the optoelectronics research to new paradigms. Apart from photovoltaics, the versatile characteristics of halide perovskites have resulted in a multitude of applications. This dissertation focuses on various properties and emerging applications particularly, photodetection and thermoelectrics of both hybrid and all-inorganic halide perovskites. It is important to understand the underlying properties of perovskites to further develop this class of materials. One of the major hurdles restricting the practical devices of perovskites is their sensitivity to moisture. A systematic investigation on the effect of humidity on hybrid perovskites revealed different degree of moisture uptake behaviour for micropatterns, films, and single crystals. Degradation pathways and processing limitations of hybrid perovskites are discussed which will aid in designing strategies to overcome these impediments for future large scale device integration. There is a recent surge of reports on doping hybrid perovskites to control its optoelectronic properties but in-depth understanding of these dopants and their ramifications remain unexplored. The effect of doping on the optoelectronic properties of hybrid perovskites is studied and a model is proposed for the observed behavior. Leveraging on the rapid growth of microcrystalline perovskite films, for the first time tunable bifacial perovskite photodetectors were fabricated, operating in both broadband and narrowband regimes. Furthermore, self-biased single crystalline photodetectors based on all-inorganic perovskite were developed with high on-off ratio and low dark current. Halide perovskites are emerging as a new class of materials for thermoelectric applications owing to their ultralow thermal conductivity and decent Seebeck coefficient. Here, halide perovskites are evaluated in terms of composition, stability, and performance tunability to understand their thermoelectric efficacy. Finally, as an alternative to Pb and Sn-based perovskites, a new hybrid was discovered with ultralow thermal conductivity and a general synthetic route to design such hybrids is proposed.
3

Perovskite light-emitting diodes with tunable emission

Lai, May Ling January 2018 (has links)
Solid-state lightings are becoming the popular choice for lightings due to its higher efficiency, improved colour rendering index and the flexibility of various size and shape. Halide perovskite has tunable colour emission, low disorder and is solution processable making it one of a popular choice as emitters. This thesis demonstrates the versatility of using halide perovskite material in light-emitting diodes. We demonstrate the first working perovskite light-emitting diode at room temperature by introducing thin layer of perovskite emitter which is crucial to confine the inherent free carriers in the material. We show that the 3D lead-halide bulk perovskite is bandgap tunable with emission in the green and red visible spectrum. Light-emitting diodes in the visible spectrum are common however near-infrared emission is a rarity. Lead is a heavy metal which is known for its toxicity. We tackled the issue of toxicity by replacing with tin and demonstrate tunable emission in the near-infrared region. Bulk perovskites have large binding energy which makes it difficult to confine the charges and form radiative recombination which is crucial for emission and efficiency of the device. We move into lower dimensionality perovskites by utilising all-inorganic perovskite nanoplatelets and show emission in the blue region.
4

Optimization of halide perovskite thin films by sequential physical vapour deposition for solar cell applications

Fru, Juvet Nche 10 1900 (has links)
In this thesis, we have developed a reproducible, safe, and scalable sequential thermal vapour deposition (STVD) method for the growth of quality 3D halide perovskite (HaP) thin films. High-quality methylammonium lead tri-bromide (MAPbBr3), methylammonium lead tri-iodide (MAPbI3), and methylammonium lead bromide-iodide (MAPb(I1-xBrx)3) thin films have been optimised using the STVD technique. The structural, optical, morphological, and electrical properties were tuned by varying the thicknesses of the organic (MAI, MABr) and inorganic (PbI2, PbBr2) precursor thin films and post-annealing times of the HaP. X-ray diffractograms confirmed the cubic MAPbBr3 structure with the Pm¯3 m space group, tetragonal MAPbI3 crystal structure with I4/mcm space group, and the tetragonal MAPbI3 structure being transformed to cubic MAPbBr3 system as MAPb(I1-xBrx)3 (x=0.89-0.95) forms. UV-Vis spectra revealed broad absorption bands with a redshift in absorption onset from 540 to 550 nm for MAPbBr3 and 750 to 780 nm for MAPbI3 as the thickness of respective organic precursors increased from 300 to 500 nm. The bandgap of MAPb(I1-xBrx)3 decreased from 2.21 to 2.14 eV as the thicknesses of MABr precursors increased from 300 to 500 nm. The crystallisation of the HaP started within the chamber, and prolonged post-annealing times exceeding 10 min caused the transformation of MAPbI3 to PbI2. Scanning Electron Micrographs show pin-hole-free and densely packed grains with an average size that increases as thicknesses increase. The charge carrier mobility increases while trap density decreases as the thickness of organic precursors increased. Besides, the thesis investigated the growth and stability of thin MAPbBr3 films at metal/MAPbBr3 interfaces. We studied the structure, morphology, and stability of the optimised MAPbBr3 perovskite on aluminium (Al), tin (Sn), silver (Ag), gold-zinc (Au-Zn) and gold (Au) electrodes, immediately and 60 days later. FE-SEM images show an average grain size that increased linearly with the work function from 294 nm for Al to 850 nm for Au. The MAPbBr3 grains remain glued to Sn, Ag, Au-Zn but delaminate quickly on Al. X-ray analysis of MAPbBr3 reveals variable crystallographic texturing for various metals and loss in intensity of prominent peaks at different rates over time. We found that the best thicknesses of 100 nm PbI2 and 500 nm MAI, and 100 nm PbBr2 and 500 nm MABr are needed for the preparation of quality MAPbI3 and MAPbBr3 thin films for solar cells, respectively. Quality thin MAPb(I0.11Br0.89)3 film is formed by inter-diffusion and halide exchange processes when optimised MAPbBr3 is grown on optimised MAPbI3 as a bottom layer. Al speeds up the degradation of MAPbBr3 at Al/MAPbBr3 while MAPbBr3 is relatively stable at Au-Zn/MAPbBr3 interfaces. / Thesis (PhD (Physics))--University of Pretoria, 2020. / University of Pretoria, the National Research Foundation/The World Academy of Sciences (NRF-TWAS), and NRF grant no N0115/115463 of the SARChI / Physics / PhD (Physics) / Restricted
5

Charge carrier dynamics of lead halide perovskites probed with ultrafast spectroscopy

Rivett, Jasmine Pamela Helen January 2018 (has links)
In this thesis, we investigate the nature of charge carrier generation, relaxation and recombination in a range of lead halide perovskites. We focus on understanding whether the photophysical behaviour of these perovskite materials is like that of highly-ordered inorganic crystalline semiconductors (exhibiting ballistic charge transport) or disordered molecular semiconductors (exhibiting strong electron-phonon coupling and highly localised excited states) and how we can tune these photophysical properties with inorganic and organic additives. We find that the fundamental photophysical properties of lead halide perovskites, such as charge carrier relaxation and recombination, arise from the lead halide lattice rather than the choice of A-site cation. We show that while the choice of A-site cation does not affect these photophysical properties directly, it can have a significant impact on the structure of the lead halide lattice and therefore affect these photophysical properties indirectly. We demonstrate that lead halide perovskites fabricated from particular inorganic and organic A-site cation combinations exhibit low parasitic trap densities and enhanced carrier interactions. Furthering our understanding of how the photophysical properties of these materials can be controlled through chemical composition is extremely important for the future design of highly efficient solar cells and light emitting diodes.
6

Modélisation des cellules solaires pérovskites, des dispositifs optoélectroniques III-V et de la microscopie à sonde de Kelvin / Modélisation des cellules solaires pérovskites, des dispositifs optoélectroniques III-V et de la microscopie à sonde de Kelvin

Huang, Yong 14 March 2018 (has links)
Ce travail de thèse se concentre sur l'étude des modèles de type drift-diffusion. Des approches sont développées pour la modélisation de la Microscopie à sonde de Kelvin, des cellules solaires à base de matériaux pérovskites (PSCs), des cellules solaires tandem de type pérovskite/silicium et des îlots quantiques lll-V/GaP. Tout d'abord, l'approche de la modélisation de la sonde de Kelvin est examinée pour la surface de TiOx et l'absorbeur pérovskite MAPbI3 Ensuite, des mesures avec sonde de Kelvin et des simulations sont proposées pour des jonctions diffuses à base de silicium et pour des PSCs à base de TiOx mésa poreux. Les variations du potentiel interne sont étudiées ouvrant la voie à une amélioration supplémentaire des dispositifs. L'influence de l'état de surface des couches wo. sur des mesures à sonde de Kelvin est étudiée théoriquement. Différents facteurs à l'origine des pertes de tension de circuit ouvert (Voc) des PSCs sont discutés. L'effet anormal d'hystérésis dans les PSCs est également simulé, en tenant compte des étals de pièges d'interface et des ions mobiles. En outre, le design de cellules solaires tandem 2T pérovskite/silicium est étudié en détails. Une jonction tunnel à base de silicium entre les deux sous-cellules supérieure et inférieure est proposée pour assurer le bon fonctionnement des cellules en série. L'influence du profil de dopage dans la jonction tunnel est discutée. Au final, le transport des porteurs dans les îlots quantiques III-V/GaP est étudié dans le cadre plus général de l'intégration d'émetteurs lll-V sur silicium. Les caractéristiques électroluminescentes et électriques de ces structures sont simulées dans une approximation cylindrique. / This PhD work focuses on optoelectronic device simulations based on drift-diffusion models. Approaches are developed for the modelling of Kelvin Probe Force Microscopy (KPFM), perovskite-based solar cells (PSCs), perovskite/silicon tandem solar cells and lll-V/GaP quantum dots (ODs). Firstly, a new approach for the modelling of KPFM is applied to TiOx slabs and to the MAPbI3 perovskite absorber. Secondly, KPFM measurements and simulations are proposed for silicon-based diffused junctions and mesoporous TiOx based PSCs. The built-in potential is investigated, and this study paves the way toward fu rther device improvements. In addition, the influence of the surface of WO. slabs on KPFM measurements is studied theoretically. Various facto rs influencing open circuit voltage (Voe) losses in PSCs are discussed. The abnormal hysteresis effect in the PSCs is simulated as well, considering interface trap states and mobile ions. The design of two-terminal perovskite/silicon tandem solar cells is studied in detail. A siliconbased tunnel junction between the top and the bottom subcells is proposed for serial current matching. The influence of the doping profile in the tunnel junction is discussed. At the end of the manuscript, the carrier transport in III-V/GaP QDs is investigated, for the integration of III-V emitters on silicon. The electroluminescence and electrical characteristics of these III -V light emitting devices are simulated by using a cylindrical approximation.
7

Electronic and Crystalline Characteristics of Mixed Metal Halide Perovskite Semiconductor Films

Cleaver, Patrick Joseph January 2018 (has links)
No description available.
8

Laser Spectroscopic Studies of Ultrafast Charge Transfer Processes in Solar Cell Materials

Kolodziej, Charles 01 June 2020 (has links)
No description available.
9

HIGH PERFORMANCE SOLUTION-PROCESSED PEROVSKITE HYBRIDSOLAR CELLS THROUGH DEVICE ENGINEERING AND NOVEL

Wang, Kai January 2017 (has links)
No description available.
10

Chemical modifications and passivation approaches in metal halide perovskite solar cells

Abdi Jalebi, Mojtaba January 2018 (has links)
This dissertation describes our study on different physical properties of passivated and chemically modified hybrid metal halide perovskite materials and development of highly efficient charge transport layers for perovskite solar cells. We first developed an efficient electron transport layer via modification of titanium dioxide nanostructure followed by a unique chemical treatment in order to have clean interface with fast electron injection form the absorber layer in the perovskite solar cells. We then explored monovalent cation doping of lead halide perovskites using sodium, copper and silver with similar ionic radii to lead to enhance structural and optoelectronic properties leading to higher photovoltaic performance of the resulting perovskite solar cells. We also performed thorough experimental characterizations together with modeling to further understand the chemical distribution and local structure of perovskite films upon monovalent cation doping. Then, we demonstrate a novel passivation approach in alloyed perovskite films to inhibit the ion segregation and parasitic non-radiative losses, which are key barriers against the continuous bandgap tunability and potential for high-performance of metal halide perovskites in device applications, by decorating the surfaces and grain boundaries with potassium halides. This leads to luminescence quantum yields approaching unity while maintaining high charge mobilities along with the inhibition of transient photo-induced ion migration processes even in mixed halide perovskites that otherwise show bandgap instabilities. We demonstrate a wide range of bandgaps stabilized against photo-induced ion migration, leading to solar cell power conversion efficiencies of 21.6% for a 1.56 eV absorber and 18.3% for a 1.78 eV absorber ideally suited for tandem solar cells. We then systematically compare the optoelectronic properties and moisture stability of the two developed passivation routes for alloyed perovskites with rubidium and potassium where the latter passivation route showed higher stability and loading capacity leading to achieve substantially higher photoluminescence quantum yield. Finally, we explored the possibility of singlet exciton fission between low bandgap perovskites and tetracene as the triplet sensitizer finding no significant energy transfer between the two. We then used tetracene as an efficient dopant-free hole transport layer providing clean interfaces with perovskite layer leading to high photoluminescence yield (e.g. ~18%). To enhance the poor ohmic contact between tetracene and the metal electrode, we added capping layer of a second hole transport layer which is extrinsically doped leading to 21.5% power conversion efficiency for the subsequent solar cells and stabilised power output over 550 hours continuous illumination.

Page generated in 0.0486 seconds