• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 1
  • Tagged with
  • 14
  • 14
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Engineering of Photophysical Properties in Halide Perovskites: From Nano to Bulk for Optoelectronic Applications

Dursun, Ibrahim 20 May 2019 (has links)
Halide perovskites have attracted the attention of a broad segment of the optoelectronics field, owing to their outstanding optical and electrical properties; simple low-temperature solution processing; low-cost raw materials; and tunable bandgaps. The main objective of this dissertation is engineering the materials’ properties of halide perovskites – their crystallinity, composition, and dimensionality – in order to understand the fundamental photophysical processes leading to their extraordinary behavior and to translate this understanding into optoelectronic applications. This dissertation is divided into two parts: the first focuses primarily on halide perovskites as a photonic source from an emission perspective, whereas the second is devoted to fundamental investigation of emergent photophysical concepts in halide perovskite materials including photon recycling and hot carriers. In the first part of this dissertation, we studied the synthesis and characterization of Cs-Pb-Br-based perovskite-related single crystals to elucidate the origin of the materials’ emission properties. After that, we presented perovskite nanocrystals (NCs) as a color converter in solid state lighting and visible light communication. Perovskites NCs’ converted white light (with a high color rendering index of 89 and a color correlated temperature of 3236 K) exhibits an extraordinary modulation bandwidth of 491 MHz, and data transmission rate of 2 Gbit/s. In the second part of this dissertation, we developed a facile synthesis method for perovskite microwires and demonstrate efficient photon recycling in those microwires with conclusive spectroscopic evidence. Subsequently, we investigated hot charge carriers in halide perovskites solar cells by a combination of laser spectroscopy and density functional modelling. Furthermore, we presented that hot holes were extracted at the device interface between the perovskite absorber and a hole transport layer. The findings and methodologies described in this dissertation represent a significant advance for utilizing the optical properties of halide perovskites, bring new fundamental photophysical insights to the field of halide perovskites, and provide a new powerful approach for designing the interface of perovskite solar cells to efficiently extract the hot charge carriers.
2

Halide perovskites for photovoltaics and light-emitting diodes

Zhao, Baodan January 2019 (has links)
Halide perovskite solar cells, with rapid efficiency improvements from ~10% to ~23% in 6 years, have attracted significant attention due to their remarkable performance, low processing cost and their potential to become a strong alternative candidate to silicon solar cells. Significant development has also been achieved in halide perovskite-based LEDs with EQE improved from below 1% to ~20% in less than 4 years. This remarkable progress can mainly be attributed to the optimisation of halide perovskite properties. This dissertation focuses on the correlation between optical and electrical properties of halide perovskites and their remarkable performance. Bandgap tunabilities of halide perovskites in blue to green regions through mixing Br-and Cl-and in near infra-red region by substituting Pb2+ with Sn2+ are demonstrated. The absorption and PL spectra are consistent with each other supporting the bandgap tunability. Corresponding EL spectra, which are consistent with their PL spectra, are also demonstrated for blue to green regions. Terahertz measurements coupled with PLQE and transient PL results reveal that the high carrier mobilities are the main reason behind the high efficiency of tin-rich samples. A novel perovskite-polymer-bulk heterostructure is introduced and studied comprehensively. Correlations between their optoelectronic properties and remarkable performance on timescales ranging from femtosecond to microsecond are presented. Transient optical spectroscopy reveals the energy transfer from 2D regions to 3D regions happens in 1 ps. The 20% EQE of the LEDs based in this structure is consistent with conventional thin-film optical models giving internal quantum efficiency of ~100%. This in agreement with near-unity PLQE value of the pristine emissive layer material and the dominant bimolecular recombination process observed in nanosecond-scale transient PL measurements. Two typical interfacial engineering methods to improve the quality of halide perovskite and device performance are then presented. Optimised NiOx is adopted to improve the anode interface. From transient photovoltaic measurements, we find the charge collection ability of NiOx is superior to that of PEDOT:PSS. This is also the main reason behind their better photovoltaic device performance. A unique anti-solvent treatment with additive modifies both the bulk and surfaces of halide perovskites and improves the device performance significantly. Transient PL and PLQE measurements demonstrate that non-radiative recombination pathways are significantly reduced.
3

Single Crystals of Organolead Halide Perovskites: Growth, Characterization, and Applications

Peng, Wei 04 1900 (has links)
With the soaring advancement of organolead halide perovskite solar cells rising from a power conversion efficiency of merely 3% to more than 22% shortly in five years, researchers’ interests on this big material family have been greatly spurred. So far, both in-depth studies on the fundamental properties of organolead halide perovskites and their extended applications such as photodetectors, light emitting diodes, and lasing have been intensively reported. The great successes have been ascribed to various superior properties of organolead halide hybrid perovskites such as long carrier lifetimes, high carrier mobility, and solution-processable high quality thin films, as will be discussed in Chapter 1. Notably, most of these studies have been limited to their polycrystalline thin films. Single crystals, as a counter form of polycrystals, have no grain boundaries and higher crystallinity, and thus less defects. These characteristics gift single crystals with superior optical, electrical, and mechanical properties, which will be discussed in Chapter 2. For example, organolead halide perovskite single crystals have been reported with much longer carrier lifetimes and higher carrier mobilities, which are especially intriguing for optoelectronic applications. Besides their superior optoelectronic properties, organolead halide perovskites have shown large composition versatility, especially their organic components, which can be controlled to effectively adjust their crystal structures and further fundamental properties. Single crystals are an ideal platform for such composition-structure-property study since a uniform structure with homogeneous compositions and without distraction from grain boundaries as well as excess defects can provide unambiguously information of material properties. As a major part of work of this dissertation, explorative work on the composition-structure-property study of organic-cation-alloyed organolead halide perovskites using their single crystals will be discussed in Chapter 3 and 4. Despite their outstanding charge transport characteristics, organolead halide perovskite single crystals grown by hitherto reported crystallization methods are not suitable for most optoelectronic devices due to their small aspect ratios and free standing growth. As the other major part of work of this dissertation, explorative work on growing organolead halide perovskite monocrystalline films and further their application in solar cells will be discussed in Chapter 5.
4

Metal Halide Perovskite: X-ray Applications

Banach, Dalton James 01 May 2023 (has links) (PDF)
Metal halide perovskites (MHPs) have attracted the attention of researchers particularly in the photo-absorption field. These materials rival traditional semiconductors with their cost-effective ease of synthesis, tunable bandgaps, and excellent photophysical properties. Single-junction MHP solar cells have rivaled current silicon-based photovoltaic devices, boasting a 25.2% light absorption conversion. Recently, MHPs have proven to be effective in x-ray detection. In this paper an investigation of three titanium-based MHPs was conducted. The goal of this research was to characterize the MHPs and determine if they are feasible materials to incorporate in x-ray detectors. After completing the research, two MHP species, FA2TiI6 and MA3TiCl7, were able to be synthesized and characterized. Their crystal systems were determined to be tetragonal with a P4/mmm space group. However, due to equipment limitations, their feasibility in x-ray detectors could not be determined.
5

Study of the Structure Property Relationships of Metal Halides

Gray, Matthew January 2021 (has links)
No description available.
6

Theoretical investigation of the instability of hybrid halide perovskites

Zheng, Chao January 2019 (has links)
It has been 10 years since the first hybrid halide perovskite photovoltaics was fabricated. Power conversion efficiency increases from the initial 3.8% to the current 25.2%. Fabrication method envolves from spin-coating to printable technology, and we deeply experience the drastic development of hybrid halide perovskite photovoltaics. Although hybrid halide photovoltaics render a variety of advantages over traditional photovoltaics, we still cannot find any practical application of these hybrid halide photovoltaics. There exist a few issues which hinder the commercialization of this type of solar cell. Among these issues, the long-term instability of hybrid halide perovskite is the main concern for the next development. This thesis expands on investigating the instability of hybrid halide perovskites from first principles. In Chapter 1, two computational methods employed in the thesis: density functional theory and Ab initio molecular dynamics are introduced. Theoretical investigations of the instability of CH3NH3PbI3 using density functional theory method are mainly conducted at 0 K. The finite temperature effect on this instability of CH3NH3PbI3 is usually neglected. In Chapter 2 of this thesis, we combined density functional calculations and additional thermodynamic data to explain the intrinsic instability of CH3NH3PbI3 under finite temperature conditions. We also analyzed the stability under humid conditions. It is shown that the aqueous solubilities of reactants play an important role in the products’ stabilities. The Born–Haber cycle of NaCl splits the enthalpy change into several components which will give a better understanding of the origin of the corresponding enthalpy change. In Chapter 3, with the extension of the Born–Haber cycle to the hybrid halide perovskites, the reaction enthalpies which govern the intrinsic instability of ionic compounds were analyzed. We proposed a criterion that helps to filter the hybrid halide perovskites with improved stability aimed for photovoltaics. Since the instability of CH3NH3PbI3 is intrinsic. The long-term instability can be settled by discovering alternative perovskite absorber. In Chapter 4, based on literature research, we propose a three-membered ring cation which has a suitable size to fit into the Pb-I framework, leading to optimal band gap for photovoltaics. Besides, the cation has a good ionization energy which will potentially render better stability. Whereas, a comprehensive study of this cyclic ring based perovskite indicates that the instability of the three-membered ring cation will make it impossible to synthesize this theoretical structure. Moisture degradation mechanisms of CH3NH3PbI3 are investigated intensively. More importantly, for practical photovoltaics, we have to imagine different situations the modules will encounter, e.g. after a couple of years, cracks appearing on the modules are inevitable, at this stage, understanding of the degradation mechanism of CH3NH3PbI3 according to liquid water becomes important. Chapter 6 elaborately describes a comprehensive degradation mechanism of CH3NH3PbI3 under liquid water. We investigate the energy barrier for the first dissolution event of CH3NH3PbI3 in water. Furthermore, thermodynamic analyses of CH3NH3PbI3 dissolution in water clearly explain the spontaneity of CH3NH3PbI3 degradation in water. Besides, different mechanisms of CH3NH3PbI3 and CsPbI3 dissolution in water are discussed. / Dissertation / Doctor of Philosophy (PhD)
7

Hybrid Lead Halide Perovskite and Bismuth-Based Perovskite-Inspired Photovoltaics: An In Situ Investigation

Tang, Ming-Chun 15 October 2019 (has links)
Ink-based semiconductors that come to mind today include conjugated molecules and polymers, colloidal quantum dots, metal halide hybrid perovskites, and transition metal oxides. These materials form an ink (solution/ suspension/ sol-gel) that can be applied and dried in ambient air to form high-quality films for optoelectronic devices. In this study, we will introduce the current understanding of ink-based lead and lead-free hybrid perovskite and perovskite-inspired thin films. Examples will be presented through time-resolved studies of the solidification to link the solid-state microstructure and device figures of merit to the ink’s formulation, drying, and solidification process. The perovskite crystallization kinetics characterized in situ during the solution process indicates an essential role by the inclusion of Cs+ and K+ alkali metal cations in perovskite inks. The film and device characterizations indicate the functions of mixed cation and halides in determining the optoelectronic properties. The further sophisticated design of perovskite inks enables significantly optimized charge dynamics, including exciton separation, inter-grain charge transfer, trap density, charge mobility, and charge collection efficiency. The considerably improved optoelectronic properties lead to higher charge collection efficiency and, therefore, better open-circuit voltage and fill factor for the Cs+-containing 3D perovskite devices in contrast to the control FAPbI3 one. Recent developments in ink formulation and processing that enable scalable ambient fabrication of high-quality perovskite semiconductor films will also be presented. These findings raise the possibility of developing more controlled perovskites for systematically addressing both charge dynamics and degradation mechanisms in concert for the timely commercialization of perovskite solar cells.
8

Synthesis and Characterization of New Visible Light Absorbing, Lead-Free Halide Double Perovskite Semiconductors

McClure, Eric Thomas January 2017 (has links)
No description available.
9

Fabrication of Perovskite Solar Cells & Applications in Multijunction Configurations

Hosseinian Ahangharnejhad, Ramez January 2019 (has links)
No description available.
10

Charge carrier relaxation in halide perovskite semiconductors for optoelectronic applications

Richter, Johannes Martin January 2018 (has links)
Lead halide perovskites have shown remarkable device performance in both solar cells and LEDs. Whilst the research efforts so far have been mainly focussed on device optimisation, little is known about the photophysical properties. For example, the nature of the bandgap is still debated and an indirect bandgap due to a Rashba splitting has been suggested. In this thesis, we study the early-time carrier relaxation and its impact on photoluminescence emission. We first study ultrafast carrier thermalization processes using 2D electronic spectroscopy and extract characteristic carrier thermalization times from below 10 fs to 85 fs. We then investigate the early-time photoluminescence emission during carrier cooling. We observe that the luminescence signal shows a rise over 2 picoseconds in CH3NH3PbI3 while carriers cool to the band edge. This shows that luminescence of hot carriers is slower than that of cold carriers, as is found in direct gap semiconductors. We conclude that electrons and holes show strong overlap in momentum space, despite the potential presence of a small band offset arising from a Rashba effect. Recombination and device performance of perovskites are thus better described within a direct bandgap model. We finally study carrier recombination in perovskites and the impact of photon recycling. We show that, for an internal photoluminescence quantum yield of 70%, we measure external yields as low as 15% in planar films, where light out-coupling is inefficient, but observe values as high as 57% in films on textured substrates that enhance out-coupling. We study the photo-excited carrier dynamics and use a rate equation to relate radiative and non-radiative recombination events to measured photoluminescence efficiencies. We conclude that the use of textured active layers has the ability to improve power conversion efficiencies for both LEDs and solar cells.

Page generated in 0.4117 seconds