Spelling suggestions: "subject:"alides."" "subject:"adalides.""
141 |
Vacuum Ultraviolet Spectroscopy of the Cyanogen HalidesRichardson, Albert William 10 1900 (has links)
<p> In Part I of this thesis, the design, construction, and calibration of a twenty-one foot off-plane Eagle vacuum spectrograph, a Lyman source, and predispersion unit are described.</p> <p> In Part II, the results of an investigation of the electronic absorption spectra of the cyanogen halides, obtained with the apparatus described in Part I, are given. Several electronic absorption systems have been observed for each of the cyanogen halides. These have been correlated and assigned to electronic transitions. Vibrational analyses have been made and the excited state dimensions have been determined by a quantitative application
of the Franck-Condon principle for two absorption systems of each of the cyanogen halides.</p> / Thesis / Doctor of Philosophy (PhD)
|
142 |
Thermodynamics of I) Metal cyanide coordination, II) Water formation, and III) Metal halide coordinationHale, John Dewey 17 July 1963 (has links)
ΔH values for the formation of Ni(CN)4(aq)= have been determined calorimetrically at 25° using a simple calorimeter and a thermometric titration procedure at high and low ionic strengths, respectively. Extrapolation of these ΔH values to infinite dilution resulted in a ΔH° value of -42.7 kcal./mole. Combination of ΔH° and ΔF° values gives a ΔS° value of -5.5 e.u. for Ni(CN)4(aq)= formation. A value of +70 e.u. is calculated for the ionic entropy of Ni(CN)4(aq)=. A preliminary investigation of the Zn(CN)4(aq)= system indicated the existence of zinc cyanide complexes other than Zn(CN)4= and allowed calculation of an approximate ΔH° value of -26.5 kcal./mole for the heat of formation of Zn(CN)4(aq)= at 25° and infinite dilution. The heats of neutralization of perchloric and hydrochloric acids with sodium hydroxide have been determined using a non-isothermal, constant-temperature-environment solution calorimeter. The final concentration of the solutions studied varied from 5.0 x 10-3 to 3.5 x 10-2 M. A value of +13.337 ± 0.015 kcal./mole for the heat of ionization of water at infinite dilution was calculated both by extrapolation of the data to infinite dilution and by correction of the data to infinite dilution using the appropriate heat of dilution data. ΔH° and ΔS° values have been determined for the stepwise reaction at 8, 25, and 40° of X- (X = Cl, Br, I) with Hg++ to form HgX2 (aq) and HgX2 (s) (X = I). All data are valid in a solvent 0.10 Fin HClO4 and 0.40F in NaClO4 Relative Hg-X bond strengths in the gaseous pnase and in aqueous solution are discussed. Trends in ΔH° and ΔS° values are discussed in terms of the thermodynamic quantities involved.
|
143 |
The infrared absorption spectra of heated hydrogen halides /Webb, David Underwood January 1967 (has links)
No description available.
|
144 |
Trialkylstannylation of Aryl and Vinyl Halides with a Fluorous DistannaneMcIntee, Jason 01 1900 (has links)
Supporting Information attached / <p> The development of a convenient route for the preparation of fluorous-tagged compounds for use with the fluorous labeling strategy (FLS) is described in this thesis. The FLS is a new and convenient method for the preparation of radiotracers and therapeutics in high effective specific activity (HESA) without the use of preparative HPLC. The objective of this thesis was to expand the general utility of the FLS by enabling the introduction of fluorous tags into molecules using a palladium-catalyzed cross-coupling reaction. To this end, a fluorous distannane, hexa(1H,1H,2H,2Hperfluorooctyl) distannane, was prepared from the corresponding fluorous tin hydride and used to produce trialkylarylstannanes from aryl and vinyl halides. Using the developed methodology, fluorous precursors for two radiopharmaceuticals, fialuridine (FIAU) and idoxuridine (IUdR), were prepared. The fluorous-tagged products were radiolabeled with iodine-125 to afford the desired compounds in high effective specific activity and in good radiochemical yield. </p> <p> Hexa(1H,1H,2H,2H perfluorooctyl)distannane was prepared from the corresponding tin hydride in nearly quantitative yield in the presence of Pd(PPh3)4. The distannane was combined with a series of seventeen aryl bromides and iodides and the appropriate palladium catalyst to afford trialkylarylstannanes in 15-59% isolated yield. </p> <p> The use of a phosphaadamantane ligand reported by Capretta et al. in the cross-coupling was also investigated, and the yields for the model compounds ranged from 13-67% Although no substantial change in yields was observed for aryl halides compared to the traditional catalyst Pd(PPh3)4, the phosphaadamantane ligands were more effective for the synthesis of precursors to [125I]fialuridine (FIAU) and [125I]idoxuridine (IUdR). Using this ligand system, the FIAU precursor was prepared in 38% overall yield from a dibenzoyl-protected vinyl bromide, and the IUdR precursor was prepared in 21% yield from a vinyl iodide. </p> <p> Following preparation of the FIAU and IUdR precursors, direct iodinolysis using a sub-stoichiometric amount of iodine was performed and the products isolated in excellent yield and purity using fluorous solid-phase extraction (FSPE). Following these experiments, the precursors were radiolabeled with [125I]NaI (50 – 500 μCi, 1.9 – 19 MBq) in the presence of Iodo-Gen® as an oxidant. Average radiochemical yields for three trials were 88% for FIAU and 94% for IUdR. The precursor was not observed in the FSPE-purified reaction mixture by UV-HPLC within the instrument’s detection limit. </p> <p> The fluorous labeling strategy allows molecular imaging and associated therapy agents to be produced in high effective specific activity in a rapid and convenient manner. With the development of the fluorous distannane and the associated coupling reactions reported here, the general utility of the fluorous labeling strategy has been greatly expanded. </p> / Thesis / Master of Science (MSc)
|
145 |
The Synthesis of N-(4-Nitrophenacyl)-4-Alkylpyridinium Halides and Reduction ProductsHerd, Ray 08 1900 (has links)
The synthesis of several N-(4-nitrophenacyl)-4-alkylpyridinium halides and their reduction products, 1-(4-aminophenyl)-2-[1-(4-alkylpiperidyl)]ethanols, was undertaken because of structural analogies between these and other physiologically active compounds, such as chloroamphenicol (I), 4,4'-diaminodiphenyl sulfone (II), and 2,2-bis(p-aminophenyl)-1,1,1-trichloroethane (III).
|
146 |
Studies of rare gas halide lasersHogan, Daniel Christopher January 1983 (has links)
This thesis presents the results of a study of the mechanisms responsible for limiting the laser pulse duration obtainable in xenon chloride lasers which are excited by UV-preionized, self-sustained gas discharges. The xenon chloride laser system, the principal emission band of which is centred around 308 nm, belongs to the class of high pressure gas lasers known as 'rare-gas halides'(RGH). RGH lasers are now well known for their high peak power output at a number of wavelengths from 193 nm to 353 nm in the ultraviolet region of the spectrum. To date, however, they have only been operated in the pulsed mode with laser pulse durations of <sup>~</sup>1000 ns for devices employing electron beam excitation and <sup>~</sup>30 ns for devices employing transverse discharge excitation. There is no a priori kinetic limitation which prevents RGH lasers from operating in the CW mode, and an attempt to extend the duration of the laser pulse would enable the quality of laser output to be improved. The laser pulse duration of a discharge excited XeCl<sup>*</sup> laser was extended by about one order of magnitude - to 270 ns FWHM - by the use of a distributed resistance electrode to stabilize the discharge. The typical gas mixture used in the laser was ~2 atm of Ne (buffer gas), ~25 mbar of Xe, and 2.5 mbar of HC1. However, the laser pulse duration obtained was considerably shorter than the 500 ns duration, 2000 A peak current, discharge excitation pulse. The cause of this difference between the duration of the laser output pulse and the discharge current pulse was found by carrying out a comprehensive parametric study of the laser, combined with a detailed spectroscopic analysis and the results of a semi-empirical computer model. Two interrelated factors were identified as being responsible for the short duration of the laser output: namely, a temporal collapse of the discharge volume and a spatially non-uniform depletion of the HCl within this volume. The experimental results presented here contradict an earlier theory which ascribed the onset of discharge instabilities in RGH lasers to step-wise ionization of the minority rare gas atoms, and which attributed stability enhancement properties to the electronegative halogen gases used in RGH lasers.
|
147 |
KINETICS OF HETEROGENEOUS SOLID-LIQUID REDOX REACTIONS: THE REACTION BETWEEN MANGANESE DIOXIDE AND HALIDE IONS (AMPEROMETRY, FLOW INJECTION).DYKE, JAMES TINER. January 1983 (has links)
The reaction between various forms of manganese dioxide and halide ions has been investigated. Analytical techniques for the study of this heterogeneous liquid-solid reaction have been developed. The appearance of the reaction products, I₂ and Mn²⁺, was monitored in the aqueous phase of the reaction mixture. I₂ was monitored using amperometry. Mn²⁺ was monitored by a novel application of flow injection analysis. A molecular mechanism was postulated which accounts for the complex pH dependence of the reaction and the inhibition of the reaction under conditions of lower hydrogen ion concentration. The potential of the manganese dioxide-iodide reaction for the metallurgical processing of ferromanganese nodules has been demonstrated. Studies show that there is a preferential dissolution of the manganese portion of the nodules by the action of iodide in acidic conditions. The use of deconvolution techniques for obtaining information from overlapping flow injection analysis peaks has been shown to be feasible. Deconvolution techniques allow an increase in the sampling rates which will broaden the application of flow injection analysis in kinetic studies.
|
148 |
High resolution laser spectroscopy of yttrium and nickel monohalides梁詠霞, Leung, Wing-har, Joanne. January 2002 (has links)
published_or_final_version / Chemistry / Doctoral / Doctor of Philosophy
|
149 |
Study of methyl halide fluxes in temperate and tropical ecosystemsBlei, Emanuel January 2010 (has links)
CH3Br and CH3Cl (methyl halides) are the most abundant natural vectors of bromine and chlorine into the stratosphere and play an important role in stratospheric ozone destruction. The current knowledge of their respective natural sources is incomplete leading to large uncertainties in their global budgets. Beside the issue of quantification, characterisation of possible sources is needed to assist modelling of future environmental change impacts on these sources and hence the stratosphere. This study describes measurements conducted at two temperate salt marsh and three temperate forest sites in Scotland, and one tropical rainforest site in Malaysian Borneo to quantify and characterise natural methyl halide producing processes in these respective ecosystems. Measurements were conducted with static enclosure techniques, and methyl halide fluxes were calculated from the concentration difference between blank/background and afterenclosure samples. Methyl halide concentrations were determined via oxygen-doped GCECD with a custom-built pre-concentration unit. External factors such as photosyntheticallyactive radiation (PAR), total solar radiation, air temperature, soil temperature, internal chamber temperature and soil moisture were recorded in parallel to the enclosures to determine possible dependencies. Salt marsh studies were carried out at Heckie’s Hole in East Lothian, and Hollands Farmin East Dumfriesshire for 2 years. The study subjects were salt marsh plants that were enclosed during daylight hours in transparent enclosures for 10min each at 2–4 week intervals throughout the year. Parallel to this monitoring programme, systematic manipulation experiments and diurnal studies were carried out to learn more about the possible influence of potential drivers such as sunlight and temperature. Mean annual net fluxes ( standard deviation (sd)) were 300 44 ngm-2 h-1 for CH3Br and 660 270 ngm-2 h-1 for CH3Cl, with fluxes of both gases following a diurnal as well as an annual cycle, being lowest during winter nights and highest during summer days. A possible link between variations of daytime fluxes over the course of a year and changes in temperature was found. CH3Cl and CH3Br fluxes were positively correlated to each other and average fluxes of CH3Cl were linked to dry mass of certain species such as Puccinellia maritima, Aster tripolium, Juncus gerardi and Plantago maritima as found at the different measurement locations. No link between methyl halide fluxes and total halogen content or halogen concentration of the enclosed vegetation was found. Work in temperate forests was carried out for over one year at Fir Links, a mixed beech/ sycamore forest in East Lothian, and on one occasion each in Griffin Forest, a sitka spruce plantation in Perthshire, and finally the Hermitage of Braid, a mixed woodland park in Edinburgh. The study subject was leaf and needle litter which was enclosed in opaque 12 L containers for 10min–24h. During enclosure, internal chamber temperature was recorded, and leaf/needle litter water content was determined after enclosure. Combined average CH3Br and CH3Cl fluxes from temperate forest litter were 4.3 10-3 ngg-1 h-1 and 0.91 ngg-1 h-1, respectively. Average fluxes measured from leaf and needle litter were comparable in magnitude and CH3Br and CH3Cl were positively correlated. However no correlation of methyl halide fluxes to either temperature or litter water content was observed. Work at Danum Valley inMalaysian Borneo focused on flux measurements from both trees and leaf litter in a tropical dipterocarp forest. Fluxes from tropical trees were measured with transparent branch chambers at 20min enclosure times whilst methyl halide fluxes from leaf litter were measured with opaque 12 L containers at 24h enclosure times. Mean CH3Br and CH3Cl fluxes from branch enclosures were 0.53 ngg-1 h-1 and 27 ngg-1 h-1, respectively, and CH3Br and CH3Cl fluxes from tropical leaf litter were 1.4 10-3 ngg-1 h-1 and 2.3 ngg-1 h-1 respectively. Again fluxes of CH3Br and CH3Cl were positively correlated but no direct environmental driver for flux variations was found. The magnitude of methyl halide fluxes was species specific with individuals of the genus Shorea generally producing large amounts of methyl halide. Tropical rainforests were confirmed to be potentially the largest single natural source of CH3Cl. Global estimates were derived from extrapolating measured fluxes from the respective global land cover areas. These estimates suggest that the ecosystems examined in this study could account for over 1/3 of global CH3Cl production and up to 13%of global CH3Br production in nature. The ratio of CH3Br to CH3Cl emissions for these ecosystems is likely to be dependent on the abundance of bromine in the plant material with higher bromine content boosting CH3Br production and suppressing CH3Cl production. For this reason salt marshes are only a very minor source of CH3Cl.
|
150 |
Part 1. Investigation of Aluminum Amino Acid Complexes; Part 2. Structural Studies of Aluminum Chalcogen BondsGravelle, Philip W. (Philip Wyn) 05 1900 (has links)
Five different complexes of aluminum and amino acids have been synthesized and characterized. Reaction between aluminum halides and amino acids that do not contain either a carboxylate or a hydroxy group in the side chain produce complexes of the general formula, [Al(amino acid)_n(halide)_3-n]_m. The most prevalent form of this form of complex is where n = 2, and an example of this in which the halide is replaced by hydroxide ligand has been structurally characterized. The complex for which n = 3 may be obtained by employing a large excess of acid, and that for which n = 1 may be obtained by employing either equimolar conditions or an excess of aluminum halide. Reactions of aluminum halides with amino acids that contain either a carboxylate or hydroxy-containing side chain may result in complexes in which the side-chain is also bound. These proved impossible to characterize fully in the case of aspartic acid. For serine, however, a complex in which the amino acid binds in a chelating fashion through both the carboxylate and hydroxy groups was isolated. It was possible to form complexes when utilizing aluminum alkyls as the metal source. However, these complexes could only be isolated when the reactivity of the species was controlled by the presence of bulky groups. In these cases, the monomeric R_2Al(amino acid) complexes were obtained. Four complexes that contain aluminum-chalcogen bonds were structurally characterized. These included the bulky alkoxide complexes (BHT)_2AIH(OEt_2), (BHT)_3Al(cyclohexanone), and the cubane [(t-amyl)AlS]_4.
|
Page generated in 0.0641 seconds