Spelling suggestions: "subject:"all effect sensor"" "subject:"fall effect sensor""
1 |
Multi-DOF precision positioning methodology using two-axis Hall-effect sensorsKawato, Yusuke 16 August 2006 (has links)
A novel sensing methodology using two-axis Hall-effect sensors is proposed, where
the absolute positioning of a device atop any magnet matrix is possible. This methodology
has the capability of micrometer-order positioning resolution as well as unrestricted translational
and rotational range in planar 3-DOF (degree-of-freedom) motions, with potential
capability of measuring all 6-DOF motions. This research presents the methodology and
preliminary experimental results of 3-DOF planar motion measurements atop a Halbach
magnet matrix using two sets of two-axis Hall-effect sensors. Analysis of the Halbach
magnet matrix is presented to understand the generated magnetic field. The algorithm
uses the Gaussian least squares differential correction (GLSDC) algorithm to estimate the
relative position and orientation from the Hall-effect sensor measurements. A recursive
discrete-time Kalman filter (DKF) is used in combination with the GLSDC to obtain optimal
estimates of position and orientation, as well as additional estimates of velocity and
angular velocity, which we can use to design a multivariable controller.
The sensor and its algorithm is implemented to a magnetic levitation (maglev) stage
positioned atop a Halbach magnet matrix. Preliminary experimental results show its position
resolution capability of less than 10 µm and capable of sensing large rotations. Controllers
were designed to close the control loop for the three planar degrees of freedom
motion using the GLSDC outputs at a sampling frequency of 800 Hz on a Pentek 4284 digital
signal processor (DSP). Calibration was done by comparing the laser interferometers and the GLSDCÂs outputs to improve the positioning accuracy.
|
2 |
Evaluation of Hall-sensors for motor control in high precision applications for aircraftForsberg, Oscar January 2016 (has links)
A functioning prototype test motor with Hall-sensor feedback has been built, and the test results show that the motor performance in terms of speed ripple is well within the specified demands. The temperature demands however, have not been fully met. The minimum operating temperature of the sensor was specified to -55◦C by Saab, and the sensors found on the market has a minimum operating temperature of -40◦C. There was also an operation error, the reason of which could either be failure of the drive unit to deliver enough current, or the stator magnetic field strength being too strong for the sensors to reliably detect the rotor magnets when a sufficiently strong current is run through the stator windings. For the purpose of investigating this error it is proposed to conduct tests with a drive unit that can deliver currents over 5 A. / SWE Demo
|
3 |
Design and Control of a Compact 6-Degree-of-Freedom Precision Positioner with Linux- Based Real-Time ControlYu, Ho 14 January 2010 (has links)
This dissertation presents the design, control, and implementation of a compact highprecision
multidimensional positioner. This precision-positioning system consists of a
novel concentrated-field magnet matrix and a triangular single-moving part that carries
three 3-phase permanent-magnet planar-levitation-motor armatures. Since only a single
levitated moving part, namely the platen, generates all required fine and coarse motions,
this positioning system is reliable and potentially cost-effective. The three planar
levitation motors based on the Lorentz-force law not only produce the vertical force to
levitate the triangular platen but also control the platen's position and orientation in the
horizontal plane. Three laser distance sensors are used to measure vertical, x-, and yrotation
motions. Three 2-axis Hall-effect sensors are used to determine lateral motions
and rotation motion about the z-axis by measuring the magnetic flux density generated by
the magnet matrix.
This positioning system has a total mass of 1.52 kg, which is the minimized mass to
produce better dynamic performance. In order to reduce the mass of the moving platen, it is made of Delrin with a mass density of 1.54 g/cm3 by Computer Numerical Controlled
(CNC) machining. The platen can be regarded a pure mass, and the spring and damping
effects are neglected except for the vertical dynamic. Single-input single-output (SISO)
digital lead-lag controllers and a multivariable Linear Quadratic Gaussian (LQG)
controller were designed and implemented. Real-time control was performed with the
Linux-Ubuntu operating system OS. Real Time Application Interface (RTAI) for Linux
works with Comedi and Comedi libraries and enables closed-loop real-time control.
One of the key advantages of this positioning stage with Hall-effect sensors is the
extended travel range and rotation angle in the horizontal mode. The maximum travel
ranges of 220 mm in x and 200 mm in y were achieved experimentally. Since the magnet
matrix generates periodical sinusoidal flux densities in the x-y plane, the travel range can
be extended by increasing the number of magnet pitches. The rotation angle of 12 degrees was
achieved in rotation around z. The angular velocities of 0.2094 rad/s and 4.74 rad/s were
produced by a 200-mm-diameter circular motion and a 30-mm-diameter spiral motion,
respectively. The maximum velocity of 16.25 mm/s was acquired from over one pitch
motion. The maximum velocity of 17.5 mm/s in a 8-mm scanning motion was achieved
with the acceleration of 72.4 m/s2. Step responses demonstrated a 10-um resolution and
6-um rms position noise in the translational mode. For the vertical mode, step responses
of 5 um in z, 0.001 degrees in roation around x, and 0.001 degrees in rotation around y were achieved.
This compact single-moving-part positioner has potential applications for precisionpositioning
systems in semiconductor- manufacturing.
|
4 |
Control and Optimization of a Compact 6-Degree-of-Freedom Precision Positioner Using Combined Digital Filtering TechniquesSilva Rivas, Jose Christian 2011 December 1900 (has links)
This thesis presents the multivariable controller design and implementation for a high-precision 6-degree-of-freedom (6-DOF) magnetically levitated (maglev) positioner. The positioner is a triangular single-moving part that carries three 3-phase permanent-magnet linear-levitation-motor armatures. The three planar levitation motors not only generate the vertical force to levitate the triangular platen but control the platen's position in the horizontal plane. All 6-DOF motions are controlled by magnetic forces only.
The positioner moves over a Halbach magnet matrix using three sets of two-axis Hall-effect sensors to measure the planar motion and three Nanogage laser distance sensors for the vertical motion. However, the Hall-effect sensors and the Nanogage laser distance sensors can only provide measurements of the displacement of all 6-axis. Since we do not have full-state feedback, I designed two Linear Quadratic Gaussian (LQG) multivariable controllers using a recursive discrete-time observer. A discrete hybrid H2/H(infinity) filter is implemented to obtain optimal estimates of position and orientation, as well as additional estimates of velocity and angular velocity for all 6 axes. In addition, an analysis was done on the signals measured by the Hall-effect sensors, and from there several digital filters were tested to optimize the readings of the sensors and obtain the best estimates possible. One of the multivariable controllers was designed to close the control loop for the three-planar-DOF motion, and the other to close the loop for the vertical motion, all at a sampling frequency of 800 Hz. Experimental results show a position resolution of 1.5 micrometers with position noise of 0.545 micrometers rms in the x-and y-directions and a resolution of less than 110 nm with position noise of 49.3 nm rms in z.
|
5 |
A high spatial resolution magnetovision camera using high-sensitivity Quantum Well Hall Effect sensorsLiang, Chen-Wei January 2017 (has links)
A systematic and detailed design, building and testing of a high-sensitivity real-time magnetovision imaging system for non-destructive testing (NDT) was the purpose of the research presented here. The magnetic imaging systems developed were all based on an ultra-high sensitivity Quantum Well Hall Effect (QWHE) sensors, denoted as the P2A, which is based on GaAs-InGaAs-AlGaAs 2DEG heterostructures. The research progressed from 0D (single sensor) to 1D (linear array) to 2D (two dimensional arrays) testing modalities. Firstly, the measurement of thermal and shot noises, drift, detection limit, and dynamic offset cancellation of the QWHE sensor were studied in detail to set the framework and limitations of the fundamental QWHE sensors before their eventual use in the imaging systems developed subsequently. The results indicate that the measured data agrees well with calculations for thermal and shot noise when the input bias current is < 3 mA. The measured drift voltages of various QWHE sensors (P2A and P3A) are less than 200 µV when the sensor bias voltage is less than or equal to 2 V. A 4-direction dynamic offset cancellation technique was developed and the results show that the offset equivalent magnetic field of the QWHE sensors can be reduced from ~ 1mT to readings equal to the Earth magnetic field (~ 50 µT). Secondly, a flexible 16 × 1 array and a 32 × 2 staggered array magnetic-field scanners were designed, built, and tested. The QWHE magnetometer had a field strength resolution of 100 nT, and a measurement dynamic range of 138 dB. The flexible 16 × 1 magnetic field scanner can be used to test uneven and/or curved surfaces. This gives the flexible magnetic field scanner better inspection capabilities in both welding hump and circular pipe samples. By the staggered arrangement of two sensor arrays, a 15.4 point per inch horizontal spatial resolution can be achieved for the staggered 32 × 2 magnetic field scanner. Both direct and alternating magnetic flux leakage (DC and AC MFL) tests with the QWHE magnetometer were accomplished to obtain graphical 2-dimensional magnetic field distributions. Both the shape and the location of defects can be identified. The results show that the sensor has high sensitivity and linearity in a wide frequency range which makes it an optimum choice for AC-MFL testing and both ferromagnetic and non-ferromagnetic materials can be investigated. Thirdly, real-time 8 × 8 and 16 16 QWHE array magnetic-field cameras were designed, built, and tested. These prototypes can measure static magnetic field strengths in a 2-dimensional plane. Different shapes of magnets and magnetic field polarities can all be identified by the 8 × 8 magnetic field camera. The camera has a resolution of 3.05 mT, and a dynamic range of 66 dB (the minimum and maximum fields measurable are 3.05 mT and 6.25 mT) and a real time magnetic field measurement rate of 13 frames per second (FPS). By contrast the1616 array magnetic field camera has an improved sampling rate of 600 frame per second and with the use of an interpolation technique, a spatial resolution of 40.6 point per inch can be achieved. The minimum and maximum detectable magnetic field for this magnetic field camera are 1.8 µT and 29.5 mT respectively leading to a record dynamic range of 84 dB for high quality imaging. Finally, a novel, hand held, magnetovision system based on the real-time 16 × 16 QWHE array magnetic-field camera was developed for improved DC and AC electromagnetic NDT testing. The system uses a new super heterodyne technique for data acquisition using the QWHE sensor as a multiplier. This is the first report of such a technique in Hall effect magnetometry. The experimental results of five case studies demonstrate that the defects location and shape can be successfully measured with MFL in DC and AC magnetic field configurations including depth profiling. The major advantages of this real-time magnetic-field camera are: (1) its ease to use as a MFL testing equipment in both DC and AC NDT testing, (2) its ability to provide 2D graphical images similar to Magnetic Particle Inspection (MPI) but without its inherent health and safety drawbacks, (3) its capability to test both ferromagnetic and non-ferromagnetic materials for deep defects below the surface using low frequency alternating magnetic fields, and (4) its ability to identify materials (metals) by alternating external magnetic field illuminations, which has considerable potential in several applications such as security checking and labelling, magnetic markers for analysis, bio-imaging detection, and medical treatments amongst others.
|
6 |
High Voltage Analog Design in a Standard Digital CMOS ProcessBeck, Riley D. 17 November 2005 (has links) (PDF)
This thesis introduces high-voltage approaches that are implemented in an analog Hall-effect sensor interface. This interface has been realized in a modified 5V 0.6um CMOS process using 40V high-voltage MOS transistors that do not affect low-voltage device functionality. These circuits include a high-voltage, low-offset current sense amplifier, which achieves a common-mode input range that is within a Vtp of Vdd using a bulk-driven differential input stage. The amplifier also uses high voltage cascode devices to protect low-voltage devices that have been placed in critical matching areas to achieve a low input offset voltage of 500uV without the use of trim. A short to battery architecture is also discussed which uses a bulk-driven comparator and a PMOS blocking technique and allows for a reliable short to battery breakdown voltage without using a series blocking diode. Integration of these blocks into a standard CMOS process leads to cost savings as additional devices such as data converters and microprocessors are combined with the Hall-effect sensor interface.
|
7 |
Modelling, simulation and analysis of low-cost direct torque control of PMSM using hall-effect sensorsOzturk, Salih Baris 25 April 2007 (has links)
This thesis focuses on the development of a novel Direct Torque Control (DTC) scheme for permanent magnet (PM) synchronous motors (surface and interior types) in the constant torque region with the help of cost-effective hall-effect sensors. This method requires no DC-link sensing, which is a mandatory matter in the conventional DTC drives, therefore it reduces the cost of a conventional DTC of a permanent magnet (PM) synchronous motor and also removes common problems including; resistance change effect, low speed and integration drift. Conventional DTC drives require at least one DC-link voltage sensor (or two on the motor terminals) and two current sensors because of the necessary estimation of position, speed, torque, and stator flux in the stationary reference frame. Unlike the conventional DTC drive, the proposed method uses the rotor reference frame because the rotor position is provided by the three hall-effect sensors and does not require expensive voltage sensors. Moreover, the proposed algorithm takes the acceleration and deceleration of the motor and torque disturbances into account to improve the speed and torque responses. The basic theory of operation for the proposed topology is presented. A mathematical model for the proposed DTC of the PMSM topology is developed. A simulation program written in MATLAB/SIMULINKî is used to verify the basic operation (performance) of the proposed topology. The mathematical model is capable of simulating the steady-state, as well as dynamic response even under heavy load conditions (e.g. transient load torque at ramp up). It is believed that the proposed system offers a reliable and low-cost solution for the emerging market of DTC for PMSM drives. Finally the proposed drive, considering the constant torque region operation, is applied to the agitation part of a laundry washing machine (operating in constant torque region) for speed performance comparison with the current low-cost agitation cycle speed control technique used by washing machine companies around the world.
|
8 |
Modelling, simulation and analysis of low-cost direct torque control of PMSM using hall-effect sensorsOzturk, Salih Baris 25 April 2007 (has links)
This thesis focuses on the development of a novel Direct Torque Control (DTC) scheme for permanent magnet (PM) synchronous motors (surface and interior types) in the constant torque region with the help of cost-effective hall-effect sensors. This method requires no DC-link sensing, which is a mandatory matter in the conventional DTC drives, therefore it reduces the cost of a conventional DTC of a permanent magnet (PM) synchronous motor and also removes common problems including; resistance change effect, low speed and integration drift. Conventional DTC drives require at least one DC-link voltage sensor (or two on the motor terminals) and two current sensors because of the necessary estimation of position, speed, torque, and stator flux in the stationary reference frame. Unlike the conventional DTC drive, the proposed method uses the rotor reference frame because the rotor position is provided by the three hall-effect sensors and does not require expensive voltage sensors. Moreover, the proposed algorithm takes the acceleration and deceleration of the motor and torque disturbances into account to improve the speed and torque responses. The basic theory of operation for the proposed topology is presented. A mathematical model for the proposed DTC of the PMSM topology is developed. A simulation program written in MATLAB/SIMULINKî is used to verify the basic operation (performance) of the proposed topology. The mathematical model is capable of simulating the steady-state, as well as dynamic response even under heavy load conditions (e.g. transient load torque at ramp up). It is believed that the proposed system offers a reliable and low-cost solution for the emerging market of DTC for PMSM drives. Finally the proposed drive, considering the constant torque region operation, is applied to the agitation part of a laundry washing machine (operating in constant torque region) for speed performance comparison with the current low-cost agitation cycle speed control technique used by washing machine companies around the world.
|
9 |
A Measurement Tool for Consumption Pattern of Hand wiping Tissue PaperSrinivas, Achanta January 2006 (has links)
Due to environmental concerns and competition within the industry there is an imminent need by paper manufacturers to asses the paper consumption depending on the quality of the tissue paper. For this purpose, the consumption of tissue paper from a tissue vending machine needs to be monitored and calculated. A Hall Effect Sensor coupled with a Passive Infrared Sensor was used to monitor the flow of paper per Person. MATLAB is used as the programming language to read the signals from the sensors. The consumption obtained would be used to obtain better, less bulky design models. As well deduce an optimum paper dimensions to get reduce the paper consumption. Also, the FEM was done in ABAQUS for better blade design of Hand wiping system. / achantasrinivas@gmail.com +46 704406894
|
10 |
Měření proudu Hallovými senzory / Current sensing with Hall-effect sensorsŠtindl, Daniel January 2016 (has links)
This master's thesis deals with integrated Hall-effect current sensors. The thesis contains summary of manufacturers of current sensors suitable for low current measurement and comparison of their important parameters. Next objective of the thesis is a design of test board used for evaluation of temperature depedent accuracy of several sensors simultaneously. The device can be connected with PC through USB interface for saving measured values or automated control with other instruments.
|
Page generated in 0.083 seconds