• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 1
  • Tagged with
  • 11
  • 11
  • 6
  • 5
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Non-covalent interactions in solution

Yang, Lixu January 2013 (has links)
Non-covalent interactions taking place in solution are essential in chemical and biological systems. The solvent environment plays an important role in determining the geometry and stability of interactions. This thesis examines aromatic stacking interactions, alkyl-alkyl interactions, edge-to-face aromatic interactions, halogen bonds and hydrogen…hydrogen interactions in solution. Chapter 1 briefly introduces the different classes of non-covalent interactions, in addition to the state-of-the-art models and methods for investigating these weak interactions. The chapter finishes with a focus on dispersion interaction in alkanes and arenes. Chapter 2 investigates dispersion interactions between stacked aromatics in solution using a new class of complexes and thermodynamic double mutant cycles (DMCs). In extended aromatics, dispersion was detected as providing a small but significant contribution to the overall stacking free energies. Chapter 3 concerns the experimental measurement of alkyl-alkyl dispersion interactions in a wide range of solvents using Wilcox torsion balances. The contribution of dispersion interactions to alkyl-alkyl association was shown to be very small, with DMC, QSPR method and Hunter's solvation model. Chapter 4 studies edge-to-face aromatic interactions in series of solvents. In the open system, edge-to-face aromatic interactions were found to be sensitive to the solvent environment. The solvent effects were complicated and cannot be rationalised by a single parameter. Further analysis is needed. Chapter 5 describes a preliminary approach to investigate organic halogen…π interactions in solution using supramolecular complexes and torsion balances. Chapter 6 is a preliminary investigation of the ability of hydrogen atoms to act as H bond acceptors in silane compounds. Computations and 1H NMR demonstrated a weak interaction between silane and perfluoro-tert-butanol.
2

Quantum Mechanical Studies of Charge Assisted Hydrogen and Halogen Bonds

Nepal, Binod 01 May 2016 (has links)
This dissertation is mainly focused on charge assisted noncovalent interactions specially hydrogen and halogen bonds. Generally, noncovalent interactions are only weak forces of interaction but an introduction of suitable charge on binding units increases the strength of the noncovalent bonds by a several orders of magnitude. These charge assisted noncovalent interactions have wide ranges of applications from crystal engineering to drug design. Not only that, nature accomplishes a number of important tasks using these interactions. Although, a good number of theoretical and experimental studies have already been done in this field, some fundamental properties of charge assisted hydrogen and halogen bonds still lack molecular level understanding and their electronic properties are yet to be explored. Better understanding of the electronic properties of these bonds will have applications on the rational design of drugs, noble functional materials, catalysts and so on. In most of this dissertation, comparative studies have been made between charge and neutral noncovalent interactions by quantum mechanical calculations. The comparisons are primarily focused on energetics and the electronic properties. In most of the cases, comparative studies are also made between hydrogen and halogen bonds which contradict the long time notion that the H-bond is the strongest noncovalent interactions.Besides that, this dissertation also explores the long range behavior and directional properties of various neutral and charge assisted noncovalent bonds.
3

Systematic Control of the Electronic States in Halogen-Bonded π-d Hybrid Molecular Conductors with Employing Anion Mixing, High Pressure, and Strong Magnetic Field / ハロゲン結合型π-d複合系分子性導体における、アニオン固溶化、高圧力、強磁場を用いた系統的電子状態制御

Kawaguchi, Genta 25 July 2016 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第19914号 / 理博第4214号 / 新制||理||1605(附属図書館) / 33000 / 京都大学大学院理学研究科化学専攻 / (主査)教授 北川 宏, 教授 島川 祐一, 教授 有賀 哲也 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
4

Iodide-Catalyzed Alkene Oxyamination Reactions for the Synthesis of Nitrogen-Containing Heterocycles

Wu, Fan January 2019 (has links)
No description available.
5

Experimental and Computational Investigations of Halogen-Bonded Systems and their NMR Parameters

Zheng, Dan 06 September 2022 (has links)
Halogen bonding to phosphorus atoms remains uncommon, with relatively few examples reported in the literature. In part 1 of the thesis, the preparation and investigation of the cocrystal (dicyclohexylphenylphosphine)(1,6-diiodoperfluorohexane) by X-ray crystallography and solid-state multinuclear magnetic resonance spectroscopy is described. The crystal structure features two crystallographically unique C-I···P halogen bonds (dI···P = 3.090(5) Å, 3.264(5) Å) and crystallographic disorder of one of the 1,6-diiodoperfluorohexane molecules. The first of these is the shortest and most linear I···P halogen bond reported to date. 13C, 19F, and 31P magic-angle spinning solid-state NMR spectra are reported. A 31P chemical shift change of -7.0 ppm in the cocrystal relative to pure dicyclohexylphenylphosphine, consistent with halogen bond formation, is noted. This work establishes iodoperfluoroalkanes as viable halogen bond donors when paired with phosphorus acceptors, and also shows that dicyclohexylphenylphosphine can act as a practical halogen bond acceptor. In part 2 of the thesis, computational work was done on nuclides of atoms which engage in the strongest halogen bonds (iodine, bromine, chlorine) that are all quadrupolar (spin I > ½). Previous group work reported extensive experimental NMR and NQR data relating 35/37Cl, 79/81Br, and 127I quadrupolar coupling information to local molecular structure in halogen bonded systems. Here, we make use of a new parameter, the valence p-orbital population anisotropy (VPPA), reported by Rinald and Wu, to increase our understanding of the origins of the electric field gradients (EFG) in halogen-bonded systems. Computations on model and real halogen-bonded cocrystalline systems using standard hybrid DFT methods are used to generate p-orbital populations and to compute the VPPA. We discuss the utility of the VPPA, and hence the EFG, as a tool to assess the ability of particular donors to engage in halogen bonds.
6

Molekulové modelování ve vývoji léčiv / Molecular modelling in drug development

Kolář, Michal January 2013 (has links)
Molecular modelling has become a well-established tool for studying biological mole- cules, moreover with the prospect of being useful for drug development. The thesis summarises research on the methodological advances in the treatment of molecular flexibility and intermolecular interactions. Altogether, seven original publications are accompanied by a text which aims to provide a general introduction to the topic as well as to emphasise some consequences of the computer-aided drug design. The molecular flexibility is tackled by a study of a drug-DNA interaction and also by an investigation of small drug molecules in the context of implicit solvent models. The approaches which neglect the conformational freedom are probed and compared with experiment in order to suggest later, how to cope with such a freedom if in- evitable. The noncovalent interactions involving halogen atoms and their importance for drug development are briefly introduced. Finally, a model for a faithful description of halogen bonds in the framework of molecular mechanics is developed and its per- formance and limits are tested by a comparison with benchmark ab initio calculations and experimental data. 1
7

Moteurs Moléculaires Cristallins Photo-pilotés

Lemouchi, Cyprien 14 October 2010 (has links) (PDF)
L'engouement aujourd'hui pour la manipulation des propriétés électriques des supraconducteurs moléculaires dans le domaine des matériaux, nous a conduit à installer des gyroscopes au sein du cristal, pour que la propriété dynamique puisse moduler l'environnement électrostatique pouvant déboucher vers un nouvel ordre de charge et des structures ferroélectriques. Une machine moléculaire qui possède un rotor, un axe de rotation et des stators tel que le 1,4-diéthynylbicyclo[2,2,2]octane, a été choisie pour sa particularité à interagir avec la lumière, que l'on organise au sein du solide, sous forme de monocristaux appelés moteurs cristallins. La RMN CP/MAS sur poudre cristalline et monocristal a permis de caractériser le mouvement du rotor. Le développement d'une approche cristalline ajouté à la fonctionnalisation des rotors ont permis leur auto-assemblage et leur installation dans des architectures ouvertes organisées autour de cation métalliques (MOF,PCP,), ce qui a permis l'élaboration de matériaux multifonctionnels, dotés de la fonction dynamique, aux propriétés de conductivité ou de transition spin (SCO-MOF). Finalement, l'étude de systèmes cristallins dynamiques de basse dimentionnalité en optique non linéaire a permis de mettre en évidence le phénomène de photo-pilotage des gyroscopes par la lumière au sein du solide. le développement de systèmes plus élaborés permettra de mieux comprendre ce phénomène afin de l'utiliser dans des applications industrielles.
8

Kvantovo-chemické štúdium nekovalentných interakcií / Quantum-chemical study of noncovalent interactions

Sedlák, Róbert January 2014 (has links)
The aim of this thesis is to investigate strength and origin of the stabilization for various types of noncovalent interactions. As this knowledge could lead to a deeper understand- ing and rationalization of the binding phenomena. Further, to participate on the de- velopment of new noncovalent data sets, which are nowadays inevitable in the process of parametrization and validation of new computational methods. In all the studies, different binding motifs of model complexes, which represent usually crystal structures, structures from unrelaxed scans or the local minima, were investi- gated. The calculations of the reference stabilization energies were carried out at ab initio level (e.g. CCSD(T)/CBS, QCISD(T)/CBS). Further, the accuracy of more ap- proximate methods (e.g. MP2.5, DFT-D or SQM methods) toward reference method, was tested. In order to obtain the nature of the stabilization the DFT-SAPT decompo- sition was frequently utilized. In the first part of the thesis, the importance and basic characteristics of different types of noncovalent interactions (e.g. halogen bond, hydrogen bond, π· · · π interaction etc.), are discussed. The second part provides the description of computational methods which were essential for our investigation. The third part of the thesis provides an overview for part...
9

Hydrogen- and halogen-bond driven co-crystallizations: from fundamental supramolecular chemistry to practical materials science

Widanalage Dona, Tharanga Kumudini Wijethunga January 1900 (has links)
Doctor of Philosophy / Chemistry / Christer B. Aakeroy / A series of co-crystallizations between four biimidazole based compounds with nine symmetric aliphatic di-acids and fifteen perfluorinated halogen-bond donors were carried out to determine if a MEPS based ranking can be used to effectively assign selectivity in hydrogen- and halogen-bond interactions. The results suggested that a simple electrostatic view provides a reliable tool for successfully implementing the practical co-crystal synthesis with desired connectivity. MEPS based selectivity guidelines for halogen-bond interactions were explored in co-crystallizations between twelve asymmetric ditopic acceptors and nine halogen-bond donors. If the difference between the two acceptor sites is below 35 kJ/mol, no selectivity was observed; above 65 kJ/mol halogen bond selectivity dominates and mid ΔE range was recognized as the grey area where predictions cannot be made. To examine competition between hydrogen and halogen bonds, five heteroaryl-2-imidazoles were co-crystallized with fifteen halogen-bond donors. It was found that halogen bonds prefer best the acceptor site, demonstrating that a suitably activated halogen-bond donor can compete with a strong hydrogen-bond donor. The benefits of ‘double activation’ for promoting halogen bond effectiveness was explored with nine haloethynylnitrobenzenes. The positive potential on halogen atoms was enhanced through a combination of an sp-hybridized carbon and electron-withdrawing nitro group(s). Iodoethynylnitrobenzenes were identified as the most effective halogen-bond donors reported to date and the compounds were exploited for the interaction preferences of nitro group and nitro⋯X-Csp interactions were identified as synthetic tools for energetic co-crystal assembly. A synthetic strategy for the deliberate assembly of molecular polygons was developed utilizing bifurcated halogen bonds constructed from N-oxides and complementary halogen-bond donors via co-crystallization. A convenient, effective, and scalable protocol for stabilizing volatile liquid chemicals with co-crystallization was achieved. Through the use of halogen-bonding, liquid iodoperfluoroalkanes were transformed into crystalline materials with low-vapor pressure, considerable thermal stability and moisture resistance. To stabilize the energetic compound ethylenedinitramine, a co-crystallization approach targeting the acidic protons was employed. Eight co-crystals were obtained and the acceptors were identified as supramolecular protecting groups leading to diminished reactivity and enhanced stability while retaining the desirable energetic properties.
10

Developments and applications in computer-aided drug discovery

Ibrahim, Mahmoud Arafat Abd el-hamid January 2012 (has links)
Noncovalent interactions are of great importance in studies on crystal design and drug discovery. One such noncovalent interaction, halogen bonding, is present between a covalently bound halogen atom and a Lewis base. A halogen bond is a directional interaction caused by the anisotropic distribution of charge on a halogen atom X covalently bound to A, which in turn forms a positive region called σ-hole on the A–X axis. Utilization of halogen bonds in lead optimization have been rarely considered in drug discovery until recently and yet more than 50% of the drug candidates are halogenated. To date, the halogen bond has not been subjected to practical molecular mechanical-molecular dynamics (MM-MD) study, where this noncovalent interaction cannot be described by conventional force fields because they do not account for the anisotropic distribution of the charge density on the halogen atoms. This problem was solved by the author and, for the first time, an extra-point of positive charge was used to represent the σ-hole on the halogen atom. This approach is called positive extra-point (PEP) approach. Interestingly, it was found that the performance of the PEP approach in describing halogen bond was better than the semiempirical methods including the recent halogen-bond corrected PM6 (PM6-DH2X) method. The PEP approach also gave promising results in describing other noncovalent halogen interactions, such as C–X···H and C–X···π-systems. The PEP resulted in an improvement in the accuracy of the electrostatic-potential derived charges of halogen-containing molecules, giving in turn better dipole moments and solvation free energies compared to high-level quantum mechanical and experimental data.With the aid of our PEP approach, the first MM-molecular dynamics (MM-MD) study of inhibitors that form a halogen bond with a receptor was performed for tetrahalobenzotriazole inhibitors complexed to cyclin-dependent protein kinase (CDK2). When the PEP approach was used, the calculated MM-generalized Born surface area (MM-GBSA)//MM-MD binding energies for halobenzimidazole and halobenzotriazole inhibitors complexed with protein kinase CK2 were found to correlate well with the corresponding experimental data, with correlation coefficients R2 of greater than 0.90. The nature and strength of halogen bonding in halo molecule···Lewis base complexes were studied in terms of molecular mechanics using our PEP approach. The contributions of the σ-hole (i.e., positively charged extra-point) and the halogen atom to the strength of this noncovalent interaction were clarified using the atomic parameter contribution to the molecular interaction approach. The molecular mechanical results revealed that the halogen bond is electrostatic and van der Waals in nature. The strength of the halogen bond increases with increasing the magnitude of the extra-point charge. The van der Waals interaction’s contribution to the halogen bond strength is most favorable in chloro complexes, whereas the electrostatic interaction is dominant in iodo complexes.The failure of the PM6 semiempirical method in describing noncovalent halogen interactions —not only halogen bonds, but also hydrogen bonds involving halogen atoms— was reported and corrected by the introduction of a second and third generation of noncovalent halogen interactions correction. The developed correction yielded promising results for the four examined noncovalent halogen interactions, namely: C–X···O, C–X···N, C–X···π-system, and C–X···H interactions.

Page generated in 0.0712 seconds