• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modeling of the Haltere-A Natural Micro-Scale Vibratory Gyroscope

Parween, Rizuwana January 2015 (has links) (PDF)
Vibratory gyroscopes have gained immense popularity in the microsystem technology because of their suitability to planar fabrication techniques. With considerable effort in design and fabrication, MEMS (Micro-electro-mechanical-system) vibratory gyroscopes have started pervading consumer electronics apart from their well known applications in aerospace and defence systems. Vibratory gyroscopes operate on the Coriolis principle for sensing rates of rotation of the r tating body. They typically employ capacitive or piezoresistive sensing for detecting the Coriolis force induced motion which is, in turn, used to determine the impressed rate of rotation. Interestingly, Nature also uses vibratory gyroscopes in its designs. Over several years, it has evolved an incredibly elegant design for vibratory gyroscopes in the form of dipteran halteres. Dipterans are known to receive mechanosensory feedback on their aerial rotations from halteres for their flight navigation. Insect biologists have also studied this sensor and continue to be fascinated by the intricate mechanism employed to sense the rate of rotation. In most Diptera, including the soldier fly, Hermetia illucens, the halteres are simple cantilever like structures with an end mass that probably evolved from the hind wings of the ancestral four-winged insect form. The halteres along with their connecting joint with the fly’s body constitute a mechanism that is used for muscle-actuated oscillations of the halteres along the actuation direction. These oscillations occur in the actuation plane such that any rotation of the insect body, induces Coriolis force on the halteres causing their plane of vibration to shift laterally by a small degree. This induced deflection along the sensing plane (out of the haltere’s actuation plane) results in strain variation at the base of the haltere shaft, which is sensed by the campaniform sensilla. The goal of the current study is to understand the strain sensing mechanism of the haltere, the nature of boundary attachments of the haltere with the fly’s body, the reasons of asymmetrical geometry of the haltere, and the interaction between both wings and the contralateral wing and haltere. In order to understand the haltere’s strain sensing mechanism, we estimate the strain pattern at the haltere base induced due to rotations about the body’s pitch, roll, and yaw axes. We model the haltere as a cantilever structure (cylindrical stalk with a spherical end knob) with experimentally determined material properties from nanoindentation and carry out analytical and numerical (finite element) analysis to estimate strains in the haltere due to Coriolis forces and inertia forces resulting from various body rotations. From the strain pattern, we establish a correlation between the location of maximum strain and the position of the campaniform sensilla and propose strain sensing mechanisms. The haltere is connected to the meta thoracic region of the fly’s body by a complicated hinge mechanism that actuates the haltere into angular oscillations with a large amplitude of 170 ◦ in the actuation plane and very small oscillation in the sensing plane. We aim to understand the reason behind the dissimilar boundary attachments along the two directions. We carry out bending experiments using micro Newton force sensor and estimate the stiffness along the actuation and sensing directions. We observe that the haltere behaves as a rigid body in the actuation direction and a flexible body in the sensing direction. We find the haltere to be a resonating structure with two different kinds of boundary attachments in the actuation and sensing directions. We create a finite element model of the haltere joint based on the optical and scanning microscope images, approximate material properties, and stiffness properties obtained from the bending experiments. We subsequently validate the model with experimental results. The haltere geometry has asymmetry along the length and the cross-section. This specific design of the haltere is in contrast to the the existing MEMS vibratory gyroscope, where the elastic beams supporting the proof mass are typically designed with symmetric cross-sections so that there is a mode matching between the actuation and the sensing vibrations. The mode matching provides high sensitivity and low bandwidth. Hence, we are interested in understanding the mechanical significance of the haltere’s asymmetry. First, we estimate the location of the maximum stress by using the actual geometry of the haltere. Next, by using the stiffness determined from bending experiments and mass properties from the geometric model, we find the natural frequencies along both actuation and sensing directions. We compare these findings with existing MEMS vibratory gyroscopes. The dipteran halteres always vibrate at the wing beat frequency. Each wing maintains 180 ◦ phase difference with its contralateral haltere and the opposite wing. Both wings and the contralateral wing-haltere mechanism exhibit coupled oscillatory motion through passive linkages. These linkages modulate the frequency and maintain the out- of-phase relationship. We explore the dynamics behind the out-of-phase behaviour and the frequency modulation of the wing-wing and wing-haltere coupled oscillatory motion. We observe that the linear coupled oscillatory model can explain the out-of-phase relationship between the two wings. However, a nonlinear coupled oscillator model is required to explain both frequency synchronization and frequency modulation of the wing with the haltere. We also carry out a finite element analysis of the wing-haltere mechanism and show that the out-of-phase motion between the wing and the haltere is due to the passive mechanical linkage of finite strength and high actuation force. The results of this study reveal the mechanics of the haltere as a rate sensing gyroscope and show the basis of the Nature’s design of this elegant sensor. This study brings out two specific features— the large amplitude actuated oscillations and the asymmetric geometry of the haltere structure— that are not found in current vibratory gyroscope designs. We hope that our findings inspire new designs of MEMS gyroscopes that have elegance and simplicity of the haltere along with the desired performance.
2

Dose des protéines HOX et spécification des appendices du vol chez les insectes / HOX dose and the specification of flight appendages in insects

Paul, Racheal 03 September 2019 (has links)
Les insectes présentent une étonnante diversité morphologique dans les organes de vol, et cette évolution a conduit à leur rayonnement au sein du règne animal. L'une des modifications les plus frappantes est la transformation des ailes postérieures en structures d'équilibrage très réduites, appelées haltères. Des travaux pionniers chez la drosophile ont montré que la spécification des haltères est sous le contrôle du gène Hox Ultrabithorax (Ubx). En revanche, la formation des ailes antérieures est décrite pour être indépendante des gènes Hox, mais cette observation est controversée chez d’autres insectes. Au cours de mon doctorat, j'ai réexaminé le rôle des gènes Hox pour la spécification des organes du vol chez la drosophile. Mes travaux montrent que la protéine Hox Antennapedia (Antp) est exprimée à un niveau faible dans des cellules spécifiques du primordium de la marge et est nécessaire à la formation correcte de l’aile adulte. De manière étonnante, Antp peut également fonctionner comme Ubx et former un haltère quand la protéine est exprimée à des niveaux similaires à ceux de Ubx. Ainsi, la formation d’organes de vol divergents chez la drosophile est directement contrôlée par une dose spécifique de protéine Hox et non par une protéine Hox spécifique. Les gènes Hox sont intrinsèquement liés à l'évolution de la diversité morphologique chez les animaux. Par conséquent, le rôle de la dose des protéines Hox a également été testé d'un point de vue évolutif parmi plusieurs lignages d'insectes. Les résultats montrent que la dose de protéines Hox est à peu près la même entre les primordia antérieur et postérieur d’un insecte à quatre ailes comme Bombyx mori. Dans l’ensemble, mes résultats démontrent que la spécification des organes de vol n’est pas un programme Hox-indépendant et que la variation de la dose des protéines Hox est un moyen de modifier la taille et la forme de l’aile, pouvant ultimement aboutir à la création d’un tout nouvel organe d’équilibrage au cours de l’évolution des insectes. Enfin, au cours de mon doctorat, j'ai également participé à plusieurs projets parallèles visant à identifier et à caractériser le rôle des nouveaux cofacteurs des protéines Hox dans différents contextes développementaux, notamment la spécification de l’haltère et la répression de l'autophagie. Ces travaux s'appuient en partie sur la complémentation de fluorescence bimoléculaire (BiFC), une méthode que nous avons récemment couplée à la panoplie d'outils génétiques de la drosophile pour réaliser des criblages d'interactions protéine-protéine à grande échelle in vivo. / Insects display an astonishing array of diversity in flight appendage morphologies and theirevolution led to the catalyzed radiation of insects in the animal kingdom. The first definite modellinking the Hox genes to morphological evolution was demonstrated in Drosophila. One of themost striking modifications is the transformation of hindwings into highly reduced balancingstructures called halteres. Work in Drosophila established that the specification of halteres isunder the control of a single Hox gene, Ultrabithorax (Ubx). In contrast, the formation of forewingshas been described to be Hox-independent. During my Ph.D., I reconsidered the role of Hox genesfor flight appendage specification in Drosophila. I show that the Hox protein Antennapedia (Antp)is expressed at a low level in specific cells of the wing blade primordium and required for theproper formation of the adult wing. Moreover, Antp works like Ubx to form a haltere whenexpressed in the levels of Ubx. Thus, the formation of divergent flight organs in Drosophila is notdependent on a specific Hox protein but on a specific Hox dose.Hox genes are intrinsically linked to the evolution of morphological diversity in animals.Therefore the role of the Hox dose was also tested from an evolutionary point of view amongseveral insect lineages. Results show that the Hox dose is for example pretty much the samebetween the forewing and hindwing primordia of the four-wing insect species Bombyx mori.Altogether, my results demonstrate that the specification of flight appendages is not aHox-independent developmental program and that the variation in the Hox dose is a way tomodify the wing size and shape, ultimately leading to a completely new balancing organ duringinsect evolution.
3

Inertial encoding mechanisms and flight dynamics of dipteran insects

Yarger, Alexandra Mead 02 June 2020 (has links)
No description available.

Page generated in 0.0345 seconds