Spelling suggestions: "subject:"hand detection"" "subject:"land detection""
1 |
Detekce pohybu ruky pro ovládání aplikací / Hand Motion RecognitionBlaho, Juraj January 2009 (has links)
The aim of this work is to design and implement a novel computer interface based on detection and tracking of a hand in an image from a single camera. The created interface doesn't require any special hardware and it is possible to use it on a common computer with standard web-camera. The implemented interface was used to create an application, which is able to synthesize keyboard and mouse input events and this way it is able to control existing programs without the need to change their source code. Another contribution of this work is a novel method of automatic data acquisition for training of hand detectors. By using this method it is possible to collect thousands of training examples in a few hours.
|
2 |
[en] TOWARDS DIRECT SPATIAL MANIPULATION OF VIRTUAL 3D OBJECTS USING VISUAL TRACKING AND GESTURE RECOGNITION OF UNMARKED HANDS / [pt] RUMO À MANIPULAÇÃO DIRETA ESPACIAL DE OBJETOS VIRTUAIS 3D USANDO RASTREAMENTO BASEADO EM VISÃO E NO RECONHECIMENTO DE GESTOS DE MÃOS SEM MARCADORESSINISA KOLARIC 03 November 2008 (has links)
[pt] A necessidade de executar manipulações espaciais (como
seleção, deslocamento, rotação, e escalamento) de objetos
virtuais 3D é comum a muitos tipos de aplicações do
software, inclusive aplicações de computer-aided design
(CAD), computer-aided modeling (CAM) e aplicações de
visualização científica e de engenharia. Neste trabalho é
apresentado um protótipo de aplicação para manipulação de
objetos virtuais 3D utilizando movimentos livres de mãos e
sem o uso de marcadores, podendo-se fazer gestos com uma ou
duas mãos. O usuário move as mãos no volume de trabalho
situado imediatamente acima da mesa, e o sistema integra
ambas as mãos (seus centróides) no ambiente virtual que
corresponde a este volume de trabalho. As mãos são
detectadas e seus gestos reconhecidos usando o método
de detecção de Viola-Jones. Tal reconhecimento de gestos é
assim usado para ligar e desligar modalidades da
manipulação. O rastreamento 3D de até duas mãos é então
obtido por uma combinação de rastreamento 2D chamado flocks-
of-KLT-features e reconstrução 3D baseada em triangulação
estéreo. / [en] The need to perform spatial manipulations (like selection,
translation, rotation, and scaling) of virtual 3D objects
is common to many types of software applications, including
computer-aided design (CAD), computer-aided
modeling (CAM) and scientific and engineering visualization
applications. In this work, a prototype application for
manipulation of 3D virtual objects using free-hand 3D
movements of bare (that is, unmarked, uninstrumented)
hands, as well as using one-handed and two-handed
manipulation gestures, is demonstrated. The user moves his
hands in the work volume situated immediately above the
desktop, and the system effectively integrates both
hands (their centroids) into the virtual environment
corresponding to this work volume. The hands are being
detected and their posture recognized using the Viola-Jones
detection method, and the hand posture recognition
thus obtained is then used for switching between
manipulation modes. Full 3D tracking of up to two hands is
obtained by a combination of 2D flocksof-KLT-features
tracking and 3D reconstruction based on stereo riangulation.
|
3 |
Promítané uživatelské rozhraní - desková hra / Projected User Interface - Board GameKaisler, Vojtěch January 2016 (has links)
The thesis brings a project and an implementation of an interactive board game. The implementation can be divided into a detection part and a projection part. Detection, realized by an infra-red camera, serves as a means for recording players' responses. The players interact with the game through simple hand gestures. Projection screens a game plan, which includes the players' figures, on the table with the help of a data projector. The game chosen for projection is a role-playing game Dungeons & Dragons.
|
4 |
Building an Understanding of Human Activities in First Person Video using Fuzzy InferenceSchneider, Bradley A. 23 May 2022 (has links)
No description available.
|
5 |
Automatic American Sign Language Imitation EvaluatorFeng, Qianli 16 September 2016 (has links)
No description available.
|
6 |
Human layout estimation using structured output learningMittal, Arpit January 2012 (has links)
In this thesis, we investigate the problem of human layout estimation in unconstrained still images. This involves predicting the spatial configuration of body parts. We start our investigation with pictorial structure models and propose an efficient method of model fitting using skin regions. To detect the skin, we learn a colour model locally from the image by detecting the facial region. The resulting skin detections are also used for hand localisation. Our next contribution is a comprehensive dataset of 2D hand images. We collected this dataset from publicly available image sources, and annotated images with hand bounding boxes. The bounding boxes are not axis aligned, but are rather oriented with respect to the wrist. Our dataset is quite exhaustive as it includes images of different hand shapes and layout configurations. Using our dataset, we train a hand detector that is robust to background clutter and lighting variations. Our hand detector is implemented as a two-stage system. The first stage involves proposing hand hypotheses using complementary image features, which are then evaluated by the second stage classifier. This improves both precision and recall and results in a state-of-the-art hand detection method. In addition we develop a new method of non-maximum suppression based on super-pixels. We also contribute an efficient training algorithm for structured output ranking. In our algorithm, we reduce the time complexity of an expensive training component from quadratic to linear. This algorithm has a broad applicability and we use it for solving human layout estimation and taxonomic multiclass classification problems. For human layout, we use different body part detectors to propose part candidates. These candidates are then combined and scored using our ranking algorithm. By applying this bottom-up approach, we achieve accurate human layout estimation despite variations in viewpoint and layout configuration. In the multiclass classification problem, we define the misclassification error using a class taxonomy. The problem then reduces to a structured output ranking problem and we use our ranking method to optimise it. This allows inclusion of semantic knowledge about the classes and results in a more meaningful classification system. Lastly, we substantiate our ranking algorithm with theoretical proofs and derive the generalisation bounds for it. These bounds prove that the training error reduces to the lowest possible error asymptotically.
|
7 |
Počítačové vidění a detekce gest rukou a prstů / Computer vision and hand gestures detection and fingers trackingBravenec, Tomáš January 2019 (has links)
Diplomová práce je zaměřena na detekci a rozpoznání gest rukou a prstů ve statických obrazech i video sekvencích. Práce obsahuje shrnutí několika různých přístupů k samotné detekci a také jejich výhody i nevýhody. V práci je též obsažena realizace multiplatformní aplikace napsané v Pythonu s použitím knihoven OpenCV a PyTorch, která dokáže zobrazit vybraný obraz nebo přehrát video se zvýrazněním rozpoznaných gest.
|
8 |
Visual interpretation of hand postures for human-machine interaction / Interprétation visuelle de gestes pour l'interaction homme-machineNguyen, Van Toi 15 December 2015 (has links)
Aujourd'hui, les utilisateurs souhaitent interagir plus naturellement avec les systèmes numériques. L'une des modalités de communication la plus naturelle pour l'homme est le geste de la main. Parmi les différentes approches que nous pouvons trouver dans la littérature, celle basée sur la vision est étudiée par de nombreux chercheurs car elle ne demande pas de porter de dispositif complémentaire. Pour que la machine puisse comprendre les gestes à partir des images RGB, la reconnaissance automatique de ces gestes est l'un des problèmes clés. Cependant, cette approche présente encore de multiples défis tels que le changement de point de vue, les différences d'éclairage, les problèmes de complexité ou de changement d'environnement. Cette thèse propose un système de reconnaissance de gestes statiques qui se compose de deux phases : la détection et la reconnaissance du geste lui-même. Dans l'étape de détection, nous utilisons un processus de détection d'objets de Viola Jones avec une caractérisation basée sur des caractéristiques internes d'Haar-like et un classifieur en cascade AdaBoost. Pour éviter l'influence du fond, nous avons introduit de nouvelles caractéristiques internes d'Haar-like. Ceci augmente de façon significative le taux de détection de la main par rapport à l'algorithme original. Pour la reconnaissance du geste, nous avons proposé une représentation de la main basée sur un noyau descripteur KDES (Kernel Descriptor) très efficace pour la classification d'objets. Cependant, ce descripteur n'est pas robuste au changement d'échelle et n'est pas invariant à l'orientation. Nous avons alors proposé trois améliorations pour surmonter ces problèmes : i) une normalisation de caractéristiques au niveau pixel pour qu'elles soient invariantes à la rotation ; ii) une génération adaptative de caractéristiques afin qu'elles soient robustes au changement d'échelle ; iii) une construction spatiale spécifique à la structure de la main au niveau image. Sur la base de ces améliorations, la méthode proposée obtient de meilleurs résultats par rapport au KDES initial et aux descripteurs existants. L'intégration de ces deux méthodes dans une application montre en situation réelle l'efficacité, l'utilité et la faisabilité de déployer un tel système pour l'interaction homme-robot utilisant les gestes de la main. / Nowadays, people want to interact with machines more naturally. One of the powerful communication channels is hand gesture. Vision-based approach has involved many researchers because this approach does not require any extra device. One of the key problems we need to resolve is hand posture recognition on RGB images because it can be used directly or integrated into a multi-cues hand gesture recognition. The main challenges of this problem are illumination differences, cluttered background, background changes, high intra-class variation, and high inter-class similarity. This thesis proposes a hand posture recognition system consists two phases that are hand detection and hand posture recognition. In hand detection step, we employed Viola-Jones detector with proposed concept Internal Haar-like feature. The proposed hand detection works in real-time within frames captured from real complex environments and avoids unexpected effects of background. The proposed detector outperforms original Viola-Jones detector using traditional Haar-like feature. In hand posture recognition step, we proposed a new hand representation based on a good generic descriptor that is kernel descriptor (KDES). When applying KDES into hand posture recognition, we proposed three improvements to make it more robust that are adaptive patch, normalization of gradient orientation in patches, and hand pyramid structure. The improvements make KDES invariant to scale change, patch-level feature invariant to rotation, and final hand representation suitable to hand structure. Based on these improvements, the proposed method obtains better results than original KDES and a state of the art method.
|
Page generated in 0.103 seconds