Spelling suggestions: "subject:"handledsfotopletysmograf"" "subject:"fotopletysmograf""
1 |
Heart rate estimation from wrist-PPG signals in activity by deep learning methodsStefanos, Marie-Ange January 2023 (has links)
In the context of health improving, the measurement of vital parameters such as heart rate (HR) can provide solutions for health monitoring, prevention and screening for certain chronic diseases. Among the different technologies for HR measuring, photoplethysmography (PPG) technique embedded in smart watches is the most commonly used in the field of consumer electronics since it is comfortable and does not require any user intervention. To be able to provide an all day and night long HR monitoring method, difficulties associated with PPG signals vulnerability to Motion Artifact (MA) must be overcome. Conventional signal processing solutions (power spectral density analysis) have limited generalization capability as they are specific to certain types of movements, highlighting the interest of machine learning tools, particularly deep learning (DL). Since DL models in the literature are trained on data from a different sensor than the internal sensor, transfer learning may prove unsuccessful. This work proposes a DL approach for estimating HR from wrist PPG signals. The model is trained on internal data with a greater demographic diversity of participants. This project also illustrates the contribution of multi-path and multi-wavelength PPG instead of the conventional single green PPG solution. This work presents several models, called DeepTime, with selected input channels and wavelengths: Mono_Green, Multi_Green, Multi_Wavelength, and Multi_Channel_Multi_Wavelength. They take temporal PPG signals as inputs along with 3D acceleration and provide HR estimation every 2 seconds with an 8-second initialization. This convolutional neural network comprised of several input branches improves the existing Withings internal method’s overall Mean Absolute Error (MAE) from 9.9 BPM to 6.9 BPM on the holdout test set. This work could be completed and improved by adding signal temporal history using recurrent layers, such as Long-Short-Term-Memory (LSTM), training the model with a bigger dataset, improving preprocessing steps or using a more elaborate loss function that includes a trust score. / I sammanhanget av förbättring av hälsouppföljning kan mätning av vitala parametrar som hjärtfrekvens (HR) erbjuda lösningar för förebyggande och screening av vissa kroniska sjukdomar. Bland olika tekniker för mätning av HR är fotoplethysmografi (PPG) integrerad i smartklockor den vanligast använda inom elektronikområdet eftersom den är bekväm och inte kräver något användaringripande. För att erbjuda en kontinuerlig HRövervakningsmetod utgör sårbarheten hos PPG-signaler för rörelseartefakter (MA) en stor utmaning. Konventionella signalbehandlingslösningar (analys av effektspektraltäthet) har begränsad generaliseringsförmåga eftersom de är specifika för vissa typer av rörelser, vilket betonar intresset för maskininlärningsverktyg, särskilt djupinlärning (DL). Eftersom DL-modeller i litteraturen tränas på data från en annan sensor än den interna sensorn kan överföringsinlärning vara misslyckad. Detta arbete föreslår en DL-ansats för att uppskatta HR från PPG-signaler på handleden. Modellen tränas på interna data med en större demografisk mångfald bland deltagarna. Detta projekt illustrerar även bidraget från flervägs- och flervågs-PPG istället för den konventionella enkla gröna PPG-lösningen. Detta arbete presenterar flera modeller, kallade DeepTime, med utvalda ingångskanaler och våglängder: Mono_Green, Multi_Green, Multi_Wavelength och Multi_Channel_Multi_Wavelength. De tar in temporära PPG-signaler tillsammans med 3D-acceleration och ger HR-uppskattning var 2:a sekund med en initialisering på 8 sekunder. Detta konvolutionella neurala nätverk, som består av flera ingångsgrenar, förbättrar den totala medelabsoluta felet (MAE) från 9,9 BPM (befintlig intern metod) till 6,9 BPM på testuppsättningen. Detta arbete kan kompletteras och förbättras genom att integrera den temporala historiken hos signalen med hjälp av återkommande lager (som LSTM), träna modellen på mer data, förbättra förbehandlingsstegen eller välja en mer sofistikerad förlustfunktion som inkluderar ett konfidensvärde.
|
Page generated in 0.0647 seconds