Spelling suggestions: "subject:"handwritten document binarization"" "subject:"handwritten document linarization""
1 |
Handwritten Document Binarization Using Deep Convolutional Features with Support Vector Machine ClassifierLai, Guojun, Li, Bing January 2020 (has links)
Background. Since historical handwritten documents have played important roles in promoting the development of human civilization, many of them have been preserved through digital versions for more scientific researches. However, various degradations always exist in these documents, which could interfere in normal reading. But, binarized versions can keep meaningful contents without degradations from original document images. Document image binarization always works as a pre-processing step before complex document analysis and recognition. It aims to extract texts from a document image. A desirable binarization performance can promote subsequent processing steps positively. For getting better performance for document image binarization, efficient binarization methods are needed. In recent years, machine learning centered on deep learning has gathered substantial attention in document image binarization, for example, Convolutional Neural Networks (CNNs) are widely applied in document image binarization because of the powerful ability of feature extraction and classification. Meanwhile, Support Vector Machine (SVM) is also used in image binarization. Its objective is to build an optimal hyperplane that could maximize the margin between negative samples and positive samples, which can separate the foreground pixels and the background pixels of the image distinctly. Objectives. This thesis aims to explore how the CNN based process of deep convolutional feature extraction and an SVM classifier can be integrated well to binarize handwritten document images, and how the results are, compared with some state-of-the-art document binarization methods. Methods. To investigate the effect of the proposed method on document image binarization, it is implemented and trained. In the architecture, CNN is used to extract features from input images, afterwards these features are fed into SVM for classification. The model is trained and tested with six different datasets. Then, there is a performance comparison between the proposed model and other binarization methods, including some state-of-the-art methods on other three different datasets. Results. The performance results indicate that the proposed model not only can work well but also perform better than some other novel handwritten document binarization method. Especially, evaluation of the results on DIBCO 2013 dataset indicates that our method fully outperforms other chosen binarization methods on all the four evaluation metrics. Besides, it also has the ability to deal with some degradations, which demonstrates its generalization and learning ability are excellent. When a new kind of degradation appears, the proposed method can address it properly even though it never appears in the training datasets. Conclusions. This thesis concludes that the CNN based component and SVM can be combined together for handwritten document binarization. Additionally, in certain datasets, it outperforms some other state-of-the-art binarization methods. Meanwhile, its generalization and learning ability is outstanding when dealing with some degradations.
|
Page generated in 0.1517 seconds