Spelling suggestions: "subject:"hardy inequality"" "subject:"tardy inequality""
1 |
Improved <i>L</i><i>p</i> Hardy InequalitiesTidblom, Jesper January 2005 (has links)
<p>Paper 1 : A geometrical version of Hardy's inequality for W_0^{1,p}(D).</p><p>The aim of this article is to prove a Hardy-type inequality, concerning functions in W_0^{1,p}(D) for some domain D in R^n, involving the volume of D and the distance to the boundary of D. The inequality is a generalization of a previously proved inequality by M. and T. Hoffmann-Ostenhof and A. Laptev, which dealt with the special case p=2.</p><p>Paper 2 : A Hardy inequality in the Half-space.</p><p>Here we prove a Hardy-type inequality in the half-space which generalize an inequality originally proved by V. Maz'ya to the so-called L^p case. This inequality had previously been conjectured by the mentioned author. We will also improve the constant appearing in front of the reminder term in the original inequality (which is the first improved Hardy inequality appearing in the litterature).</p><p>Paper 3 : Hardy type inequalities for Many-Particle systems.</p><p>In this article we prove some results about the constants appearing in Hardy inequalities related to many particle systems. We show that the problem of estimating the best constants there is related to some interesting questions from Geometrical combinatorics. The asymptotical behaviour, when the number of particles approaches infinity, of a certain quantity directly related to this, is also investigated.</p><p>Paper 4 : Various results in the theory of Hardy inequalities and personal thoughts.</p><p>In this article we give some further results concerning improved Hardy inequalities in Half-spaces and other conic domains. Also, some examples of applications of improved Hardy inequalities in the theory of viscous incompressible flow will be given.</p>
|
2 |
Improved Lp Hardy InequalitiesTidblom, Jesper January 2005 (has links)
Paper 1 : A geometrical version of Hardy's inequality for W_0^{1,p}(D). The aim of this article is to prove a Hardy-type inequality, concerning functions in W_0^{1,p}(D) for some domain D in R^n, involving the volume of D and the distance to the boundary of D. The inequality is a generalization of a previously proved inequality by M. and T. Hoffmann-Ostenhof and A. Laptev, which dealt with the special case p=2. Paper 2 : A Hardy inequality in the Half-space. Here we prove a Hardy-type inequality in the half-space which generalize an inequality originally proved by V. Maz'ya to the so-called L^p case. This inequality had previously been conjectured by the mentioned author. We will also improve the constant appearing in front of the reminder term in the original inequality (which is the first improved Hardy inequality appearing in the litterature). Paper 3 : Hardy type inequalities for Many-Particle systems. In this article we prove some results about the constants appearing in Hardy inequalities related to many particle systems. We show that the problem of estimating the best constants there is related to some interesting questions from Geometrical combinatorics. The asymptotical behaviour, when the number of particles approaches infinity, of a certain quantity directly related to this, is also investigated. Paper 4 : Various results in the theory of Hardy inequalities and personal thoughts. In this article we give some further results concerning improved Hardy inequalities in Half-spaces and other conic domains. Also, some examples of applications of improved Hardy inequalities in the theory of viscous incompressible flow will be given.
|
3 |
Integrální a supremální operátory na váhových prostorech funkcí / Integral and supremal operators on weighted function spacesKřepela, Martin January 2017 (has links)
Title: Integral and Supremal Operators on Weighted Function Spaces Author: Martin Křepela Department: Department of Mathematical Analysis Supervisor: prof. RNDr. Luboš Pick, CSc., DSc., Department of Mathematical Analysis Abstract: The common topic of this thesis is boundedness of integral and supre- mal operators between function spaces with weights. The results of this work have the form of characterizations of validity of weighted operator inequalities for appropriate cones of functions. The outcome can be divided into three cate- gories according to the particular type of studied operators and function spaces. The first part involves a convolution operator acting on general weighted Lorentz spaces of types Λ, Γ and S defined in terms of the nonincreasing rear- rangement, Hardy-Littlewood maximal function and the difference of these two, respectively. It is characterized when a convolution-type operator with a fixed kernel is bounded between the aforementioned function spaces. Furthermore, weighted Young-type convolution inequalities are obtained and a certain optima- lity property of involved rearrangement-invariant domain spaces is proved. The additional provided information includes a comparison of the results to the pre- viously known ones and an overview of basic properties of some new function spaces...
|
4 |
The Weighted Space OdysseyKřepela, Martin January 2017 (has links)
The common topic of this thesis is boundedness of integral and supremal operators between weighted function spaces. The first type of results are characterizations of boundedness of a convolution-type operator between general weighted Lorentz spaces. Weighted Young-type convolution inequalities are obtained and an optimality property of involved domain spaces is proved. Additional provided information includes an overview of basic properties of some new function spaces appearing in the proven inequalities. In the next part, product-based bilinear and multilinear Hardy-type operators are investigated. It is characterized when a bilinear Hardy operator inequality holds either for all nonnegative or all nonnegative and nonincreasing functions on the real semiaxis. The proof technique is based on a reduction of the bilinear problems to linear ones to which known weighted inequalities are applicable. Further objects of study are iterated supremal and integral Hardy operators, a basic Hardy operator with a kernel and applications of these to more complicated weighted problems and embeddings of generalized Lorentz spaces. Several open problems related to missing cases of parameters are solved, thus completing the theory of the involved fundamental Hardy-type operators. / Operators acting on function spaces are classical subjects of study in functional analysis. This thesis contributes to the research on this topic, focusing particularly on integral and supremal operators and weighted function spaces. Proving boundedness conditions of a convolution-type operator between weighted Lorentz spaces is the first type of a problem investigated here. The results have a form of weighted Young-type convolution inequalities, addressing also optimality properties of involved domain spaces. In addition to that, the outcome includes an overview of basic properties of some new function spaces appearing in the proven inequalities. Product-based bilinear and multilinear Hardy-type operators are another matter of focus. It is characterized when a bilinear Hardy operator inequality holds either for all nonnegative or all nonnegative and nonincreasing functions on the real semiaxis. The proof technique is based on a reduction of the bilinear problems to linear ones to which known weighted inequalities are applicable. The last part of the presented work concerns iterated supremal and integral Hardy operators, a basic Hardy operator with a kernel and applications of these to more complicated weighted problems and embeddings of generalized Lorentz spaces. Several open problems related to missing cases of parameters are solved, completing the theory of the involved fundamental Hardy-type operators. / <p>Artikel 9 publicerad i avhandlingen som manuskript med samma titel.</p>
|
Page generated in 0.0577 seconds