Spelling suggestions: "subject:"harmonic actionfunction\"" "subject:"harmonic functionaction\""
1 |
Χώροι συναρτήσεων / Function spacesΝιάχος, Διονύσιος 07 July 2015 (has links)
Έστω C(Y,Z) το σύνολο των συνεχών συναρτήσεων από έναν τοπολογικό χώρο Υ σ' έναν τοπολογικό χώρο Ζ. Στη διπλωματική εργασία δίνουμε και μελετάμε τοπολογίες στο C(Y,Z). / Let C(Y,Z) be the set of all continuous maps from a topological
space Y to a topological space Z . We give and study topologies
on the set C(Y,Z) .
|
2 |
Growth Properties of subharmonic functionsDahlberg, Björn E. J. January 1971 (has links)
Thesis Göteborg. / "No. 1971-12." Thesis statement from slip inserted. Includes bibliographical references.
|
3 |
Wavelet methods for transfer function modellingHunt, Katherine January 2002 (has links)
No description available.
|
4 |
Calcium signalling in renal functionPollock, Valerie Patricia January 2005 (has links)
No description available.
|
5 |
A study of Besov-Lipschitz and Triebel-Lizorkin spaces using non-smooth kernelsCandy, Timothy Lars January 2008 (has links)
We consider the problem of characterising Besov-Lipshitz and Triebel-Lizorkin
spaces using kernels with limited smoothness and decay. This extends the work of H.-Q.
Bui et al in [4] and [5] from kernels in S to more general kernels, including the Poisson
kernel. We overcome the difficulty of defining the convolution of a general kernel with a
distribution by using the concept of a bounded distribution introduced by E. Stein [12].
The characterisations we obtain are valid for the full range of indices.
|
6 |
On estimates of constants for maximal functionsIakovlev, Alexander January 2014 (has links)
In this work we will study Hardy-Littlewood maximal function and maximal operator, basing on both classical and most up to date works. In the first chapter we will give definitions for different types of those objects and consider some of their most important properties. The second chapter is entirely devoted to an overview of the fundamental properties of Hardy-Littlewood maximal function, which are strong (p, p) and weak (1, 1) inequalities. Here we list the most actual results on this inequalities in correspondence to the way the maximal func-tion is defined. The third chapter presents the theorem on asymptotic behavior of the lower bound of the constant in the weak-type (1, 1) inequality for the maximal function associated with cubes of Rd, then the dimension d tends to infinity. In the last chapter a method forcomputing constant c, appearing in the main theorem of chapter 3, is given. / <p>QC 20140527</p>
|
7 |
Riesz mass and growth problems for subharmonic functionsStanton, Charles Stuart. January 1982 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1982. / Typescript. Vita. Description based on print version record. Includes bibliographical references (leaves 83-84).
|
8 |
Hyperbolic hypergeometric functionsBult, Fokko Joppe van de, January 2007 (has links)
Proefschift Universiteit van Amsterdam. / Met lit. opg. en een samenvatting in het Nederlands.
|
9 |
Sphingolipid metabolism in vascular functionMulders, Arthur January 1900 (has links)
Proefschrift Universiteit van Amsterdam. / Met lit.opg. en samenvatting in het Nederlands.
|
10 |
Cognitive functions in schizophreniaKrabbendam, Lydia. January 1900 (has links)
Proefschrift Universiteit Maastricht. / Met bibliogr., lit. opg. - Met samenvatting in het Nederlands.
|
Page generated in 0.3574 seconds