• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 3
  • 1
  • Tagged with
  • 26
  • 26
  • 26
  • 7
  • 7
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Utilização de funções LSH para busca conceitual baseada em ontologias / Use of LSH functions for conceptual search based on ontologies

Paula, Luciano Bernardes de 18 August 2018 (has links)
Orientador: Maurício Ferreira Magalhães / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computação / Made available in DSpace on 2018-08-18T18:55:11Z (GMT). No. of bitstreams: 1 Paula_LucianoBernardesde_D.pdf: 1395906 bytes, checksum: 9d9a3c99b7292a6482f33e12db95abd6 (MD5) Previous issue date: 2011 / Resumo: O volume de dados disponíveis na WWW aumenta a cada dia. Com o surgimento da Web Semântica, os dados passaram a ter uma representação do seu significado, ou seja, serem classificados em um conceito de um domínio de conhecimento, tal domínio geralmente definido por uma ontologia. Essa representação, apoiada em todo o ferramental criado para a Web Semântica, propicia a busca conceitual. Nesse tipo de busca, o objetivo não é a recuperação de um dado específico, mas dados, de diversos tipos, classificados em um conceito de um domínio de conhecimento. Utilizando um índice de similaridade, é possível a recuperação de dados referentes a outros conceitos do mesmo domínio, aumentando a abrangência da busca. A indexação distribuída desses dados pode fazer com que uma busca conceitual por similaridade se torne muito custosa. Existem várias estruturas de indexação distribuída, como as redes P2P, que são empregadas na distribuição e compartilhamento de grandes volumes de dados. Esta tese propõe a utilização de funções LSH na indexação de conceitos de um domínio, definido por uma ontologia, mantendo a similaridade entre eles. Dessa forma, conceitos similares são armazenados próximos um dos outros, tal conceito de proximidade medida em alguma métrica, facilitando a busca conceitual por similaridade / Abstract: The volume of data available in the WWW increases every day. The Semantic Web emerged, giving a representation of the meaning of data, being classified in a concept of a knowledge domain, which is generally defined using an ontology. This representation, based in all the tools created for the Semantic Web, possibilitates the conceptual search. In this type of search, the goal is not to retrieve a specific piece of data, but several data, of several types, classified in a concept of an ontology. Using a similarity level, the retrieval of data that refer to other concepts of the domain is also possible, making the search broader. The distributed indexing of all these data may turn the conceptual search costly. The Internet holds several structures of distributed indexing, such as P2P networks, which are used in the distribution and sharing of huge volumes of data. This thesis presents how it is possible to use LSH functions to generate identifiers to concepts of a domain, defined using an ontology, keeping their similarity. This way, similar concepts are stored near each other, such distance measured in some metric, turning the conceptual search by similarity easier / Doutorado / Engenharia de Computação / Doutor em Engenharia Elétrica
22

Privacy Preserving EEG-based Authentication Using Perceptual Hashing

Koppikar, Samir Dilip 12 1900 (has links)
The use of electroencephalogram (EEG), an electrophysiological monitoring method for recording the brain activity, for authentication has attracted the interest of researchers for over a decade. In addition to exhibiting qualities of biometric-based authentication, they are revocable, impossible to mimic, and resistant to coercion attacks. However, EEG signals carry a wealth of information about an individual and can reveal private information about the user. This brings significant privacy issues to EEG-based authentication systems as they have access to raw EEG signals. This thesis proposes a privacy-preserving EEG-based authentication system that preserves the privacy of the user by not revealing the raw EEG signals while allowing the system to authenticate the user accurately. In that, perceptual hashing is utilized and instead of raw EEG signals, their perceptually hashed values are used in the authentication process. In addition to describing the authentication process, algorithms to compute the perceptual hash are developed based on two feature extraction techniques. Experimental results show that an authentication system using perceptual hashing can achieve performance comparable to a system that has access to raw EEG signals if enough EEG channels are used in the process. This thesis also presents a security analysis to show that perceptual hashing can prevent information leakage.
23

Metric space indexing for nearest neighbor search in multimedia context : Indexação de espaços métricos para busca de vizinho mais próximo em contexto multimídia / Indexação de espaços métricos para busca de vizinho mais próximo em contexto multimídia

Silva, Eliezer de Souza da, 1988- 26 August 2018 (has links)
Orientador: Eduardo Alves do Valle Junior / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computação / Made available in DSpace on 2018-08-26T08:10:33Z (GMT). No. of bitstreams: 1 Silva_EliezerdeSouzada_M.pdf: 2350845 bytes, checksum: dd31928bd19312563101a08caea74d63 (MD5) Previous issue date: 2014 / Resumo: A crescente disponibilidade de conteúdo multimídia é um desafio para a pesquisa em Recuperação de Informação. Usuários querem não apenas ter acesso aos documentos multimídia, mas também obter semântica destes documentos, de modo que a capacidade de encontrar um conteúdo específico em grandes coleções de documentos textuais e não textuais é fundamental. Nessas grandes escalas, sistemas de informação multimídia de recuperação devem contar com a capacidade de executar a busca por semelhança de forma eficiente. No entanto, documentos multimídia são muitas vezes representados por descritores multimídia representados por vetores de alta dimensionalidade, ou por outras representações complexas em espaços métricos. Fornecer a possibilidade de uma busca por similaridade eficiente para esse tipo de dados é extremamente desafiador. Neste projeto, vamos explorar uma das famílias mais citado de soluções para a busca de similaridade, o Hashing Sensível à Localidade (LSH - Locality-sensitive Hashing em inglês), que se baseia na criação de funções de hash que atribuem, com maior probabilidade, a mesma chave para os dados que são semelhantes. O LSH está disponível apenas para um punhado funções de distância, mas, quando disponíveis, verificou-se ser extremamente eficiente para arquiteturas com custo de acesso uniforme aos dados. A maioria das funções LSH existentes são restritas a espaços vetoriais. Propomos dois métodos novos para o LSH, generalizando-o para espaços métricos quaisquer utilizando particionamento métrico (centróides aleatórios e k-medoids). Apresentamos uma comparação com os métodos LSH bem estabelecidos em espaços vetoriais e com os últimos concorrentes novos métodos para espaços métricos. Desenvolvemos uma modelagem teórica do comportamento probalístico dos algoritmos propostos e demonstramos algumas relações e limitantes para a probabilidade de colisão de hash. Dentre os algoritmos propostos para generelizar LSH para espaços métricos, esse desenvolvimento teórico é novo. Embora o problema seja muito desafiador, nossos resultados demonstram que ela pode ser atacado com sucesso. Esta dissertação apresentará os desenvolvimentos do método, a formulação teórica e a discussão experimental dos métodos propostos / Abstract: The increasing availability of multimedia content poses a challenge for information retrieval researchers. Users want not only have access to multimedia documents, but also make sense of them --- the ability of finding specific content in extremely large collections of textual and non-textual documents is paramount. At such large scales, Multimedia Information Retrieval systems must rely on the ability to perform search by similarity efficiently. However, Multimedia Documents are often represented by high-dimensional feature vectors, or by other complex representations in metric spaces. Providing efficient similarity search for that kind of data is extremely challenging. In this project, we explore one of the most cited family of solutions for similarity search, the Locality-Sensitive Hashing (LSH), which is based upon the creation of hashing functions which assign, with higher probability, the same key for data that are similar. LSH is available only for a handful distance functions, but, where available, it has been found to be extremely efficient for architectures with uniform access cost to the data. Most existing LSH functions are restricted to vector spaces. We propose two novel LSH methods (VoronoiLSH and VoronoiPlex LSH) for generic metric spaces based on metric hyperplane partitioning (random centroids and K-medoids). We present a comparison with well-established LSH methods in vector spaces and with recent competing new methods for metric spaces. We develop a theoretical probabilistic modeling of the behavior of the proposed algorithms and show some relations and bounds for the probability of hash collision. Among the algorithms proposed for generalizing LSH for metric spaces, this theoretical development is new. Although the problem is very challenging, our results demonstrate that it can be successfully tackled. This dissertation will present the developments of the method, theoretical and experimental discussion and reasoning of the methods performance / Mestrado / Engenharia de Computação / Mestre em Engenharia Elétrica
24

Space-efficient data sketching algorithms for network applications

Hua, Nan 06 July 2012 (has links)
Sketching techniques are widely adopted in network applications. Sketching algorithms “encode” data into succinct data structures that can later be accessed and “decoded” for various purposes, such as network measurement, accounting, anomaly detection and etc. Bloom filters and counter braids are two well-known representatives in this category. Those sketching algorithms usually need to strike a tradeoff between performance (how much information can be revealed and how fast) and cost (storage, transmission and computation). This dissertation is dedicated to the research and development of several sketching techniques including improved forms of stateful Bloom Filters, Statistical Counter Arrays and Error Estimating Codes. Bloom filter is a space-efficient randomized data structure for approximately representing a set in order to support membership queries. Bloom filter and its variants have found widespread use in many networking applications, where it is important to minimize the cost of storing and communicating network data. In this thesis, we propose a family of Bloom Filter variants augmented by rank-indexing method. We will show such augmentation can bring a significant reduction of space and also the number of memory accesses, especially when deletions of set elements from the Bloom Filter need to be supported. Exact active counter array is another important building block in many sketching algorithms, where storage cost of the array is of paramount concern. Previous approaches reduce the storage costs while either losing accuracy or supporting only passive measurements. In this thesis, we propose an exact statistics counter array architecture that can support active measurements (real-time read and write). It also leverages the aforementioned rank-indexing method and exploits statistical multiplexing to minimize the storage costs of the counter array. Error estimating coding (EEC) has recently been established as an important tool to estimate bit error rates in the transmission of packets over wireless links. In essence, the EEC problem is also a sketching problem, since the EEC codes can be viewed as a sketch of the packet sent, which is decoded by the receiver to estimate bit error rate. In this thesis, we will first investigate the asymptotic bound of error estimating coding by viewing the problem from two-party computation perspective and then investigate its coding/decoding efficiency using Fisher information analysis. Further, we develop several sketching techniques including Enhanced tug-of-war(EToW) sketch and the generalized EEC (gEEC)sketch family which can achieve around 70% reduction of sketch size with similar estimation accuracies. For all solutions proposed above, we will use theoretical tools such as information theory and communication complexity to investigate how far our proposed solutions are away from the theoretical optimal. We will show that the proposed techniques are asymptotically or empirically very close to the theoretical bounds.
25

Towards Efficient Delivery of Dynamic Web Content

Ramaswamy, Lakshmish Macheeri 26 August 2005 (has links)
Advantages of cache cooperation on edge cache networks serving dynamic web content were studied. Design of cooperative edge cache grid a large-scale cooperative edge cache network for delivering highly dynamic web content with varying server update frequencies was presented. A cache clouds-based architecture was proposed to promote low-cost cache cooperation in cooperative edge cache grid. An Internet landmarks-based scheme, called selective landmarks-based server-distance sensitive clustering scheme, for grouping edge caches into cooperative clouds was presented. Dynamic hashing technique for efficient, load-balanced, and reliable documents lookups and updates was presented. Utility-based scheme for cooperative document placement in cache clouds was proposed. The proposed architecture and techniques were evaluated through trace-based simulations using both real-world and synthetic traces. Results showed that the proposed techniques provide significant performance benefits. A framework for automatically detecting cache-effective fragments in dynamic web pages was presented. Two types of fragments in web pages, namely, shared fragments and lifetime-personalization fragments were identified and formally defined. A hierarchical fragment-aware web page model called the augmented-fragment tree model was proposed. An efficient algorithm to detect maximal fragments that are shared among multiple documents was proposed. A practical algorithm for detecting fragments based on their lifetime and personalization characteristics was designed. The proposed framework and algorithms were evaluated through experiments on real web sites. The effect of adopting the detected fragments on web-caches and origin-servers is experimentally studied.
26

Securing digital images

Kailasanathan, Chandrapal. January 2003 (has links)
Thesis (Ph.D.)--University of Wollongong, 2003. / Typescript. Includes bibliographical references: leaf 191-198.

Page generated in 0.0906 seconds