• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 3
  • 2
  • 1
  • Tagged with
  • 29
  • 29
  • 21
  • 19
  • 16
  • 14
  • 14
  • 11
  • 9
  • 9
  • 9
  • 8
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Classical and Quantum Field Theory of Bose-Einstein Condensates

Wuester, Sebastian, sebastian.wuester@gmx.net January 2007 (has links)
We study the application of Bose-Einstein condensates (BECs) to simulations of phenomena across a number of disciplines in physics, using theoretical and computational methods. ¶ Collapsing condensates as created by E. Donley et al. [Nature 415, 39 (2002)] exhibit potentially useful parallels to an inflationary universe. To enable the exploitation of this analogy, we check if current quantum field theories describe collapsing condensates quantitatively, by targeting the discrepancy between experimental and theoretical values for the time to collapse. To this end, we couple the lowest order quantum field correlation functions to the condensate wavefunction, and solve the resulting Hartree-Fock-Bogoliubov equations numerically. Complementarily, we perform stochastic truncated Wigner simulations of the collapse. Both methods also allow us to study finite temperature effects. ¶ We find with neither method that quantum corrections lead to a faster collapse than is predicted by Gross-Pitaevskii theory. We conclude that the discrepancy between the experimental and theoretical values of the collapse time cannot be explained by Gaussian quantum fluctuations or finite temperature effects. Further studies are thus required before the full analogue cosmology potential of collapsing condensates can be utilised. ¶ As the next project, we find experimental parameter regimes in which stable three-dimensional Skyrmions can exist in a condensate. We show that their stability in a harmonic trap depends critically on scattering lengths, atom numbers, trap rotation and trap anisotropy. In particular, for the Rb87 |F=1,m_f=-1>, |F=2,m_f=1> hyperfine states, stability is sensitive to the scattering lengths at the 2% level. We find stable Skyrmions with slightly more than 2*10^6 atoms, which can be stabilised against drifting out of the trap by laser pinning. ¶ As a stepping stone towards Skyrmions, we propose a method for the stabilisation of a stack of parallel vortex rings in a Bose-Einstein condensate. The method makes use of a ``hollow'' laser beam containing an optical vortex, which realises an optical tunnel for the condensate. Using realistic experimental parameters, we demonstrate numerically that our method can stabilise up to 9 vortex rings. ¶ Finally, we focus on analogue gravity, further exploiting the analogy between flowing condensates and general relativistic curved space time. We compare several realistic setups, investigating their suitability for the observation of analogue Hawking radiation. We link our proposal of stable ring flows to analogue gravity, by studying supersonic flows in the optical tunnel. We show that long-living immobile condensate solitons generated in the tunnel exhibit sonic horizons, and discuss whether these could be employed to study extreme cases in analogue gravity. ¶ Beyond these, our survey indicates that for conventional analogue Hawking radiation, simple outflow from a condensate reservoir, in effectively one dimension, has the best properties. We show with three dimensional simulations that stable sonic horizons exist under realistic conditions. However, we highlight that three-body losses impose limitations on the achievable analogue Hawking temperatures. These limitations vary between the atomic species and favour light atoms. ¶ Our results indicate that Bose-Einstein condensates will soon be useful for interdisciplinary studies by analogy, but also show that the experiments will be challenging.
12

Particle Definitions and the Information Loss Paradox

Venditti, Alexander 13 August 2013 (has links)
An investigation of information loss in black hole spacetimes is performed. We demon- strate that the definition of particles as energy levels of the Harmonic oscillator will not have physical significance in general and is thus not a good instrument to study the ra- diation of black holes. This is due to the ambiguity of the choice of coordinates on the phase space of the quantum field. We demonstrate how to identify quantum states in the functional Schr ̈dinger picture. o We demonstrate that information is truly lost in the case of a Vaidya black hole (a black hole formed from null dust) if we neglect back reaction. This is done by quantizing the constrained classical system of a Klein-Gordon field in a Vaidya background. The interaction picture of quantum mechanics can be applied to this system. We find a physically well motivated vacuum state for a spherically symmetric space- time with an extra conformal Killing vector. We also demonstrate how to calculate the response of a particle detector in the a LeMaitre-Tolman-Bondi spacetime with a self- similarity. Finally, some of the claims and confusion surrounding Unruh radiation, Hawking radiation and the equivalence principle are investigated and shown to be false.
13

Particle Definitions and the Information Loss Paradox

Venditti, Alexander 13 August 2013 (has links)
An investigation of information loss in black hole spacetimes is performed. We demon- strate that the definition of particles as energy levels of the Harmonic oscillator will not have physical significance in general and is thus not a good instrument to study the ra- diation of black holes. This is due to the ambiguity of the choice of coordinates on the phase space of the quantum field. We demonstrate how to identify quantum states in the functional Schr ̈dinger picture. o We demonstrate that information is truly lost in the case of a Vaidya black hole (a black hole formed from null dust) if we neglect back reaction. This is done by quantizing the constrained classical system of a Klein-Gordon field in a Vaidya background. The interaction picture of quantum mechanics can be applied to this system. We find a physically well motivated vacuum state for a spherically symmetric space- time with an extra conformal Killing vector. We also demonstrate how to calculate the response of a particle detector in the a LeMaitre-Tolman-Bondi spacetime with a self- similarity. Finally, some of the claims and confusion surrounding Unruh radiation, Hawking radiation and the equivalence principle are investigated and shown to be false.
14

Fuzzy Blackholes

Murugan, Anand 01 May 2007 (has links)
The fuzzball model of a black hole is an attempt to resolve the many paradoxes and puzzles of black hole physics that have revealed themselves over the last century. These badly behaved solutions of general relativity have given physicists one of the few laboratories to test candidate quantum theories of gravity. Though little is known about exactly what lies beyond the event horizon, and what the ultimate fate of matter that falls in to a black hole is, we know a few intriguing and elegant semi-classical results that have kept physicists occupied. Among these are the known black hole entropy and the Hawking radiation process.
15

Radiação Hawking de um buraco negro BTZ não-comutativo.

CAVALCANTI, Arthur Gonçalves. 09 October 2018 (has links)
Submitted by Emanuel Varela Cardoso (emanuel.varela@ufcg.edu.br) on 2018-10-09T18:55:52Z No. of bitstreams: 1 ARTHUR GONÇALVES CAVALCANTI – DISSERTAÇÃO (PPGFísica) 2016.pdf: 845402 bytes, checksum: dbdfb2a26834c477a45e9e735fa670d3 (MD5) / Made available in DSpace on 2018-10-09T18:55:52Z (GMT). No. of bitstreams: 1 ARTHUR GONÇALVES CAVALCANTI – DISSERTAÇÃO (PPGFísica) 2016.pdf: 845402 bytes, checksum: dbdfb2a26834c477a45e9e735fa670d3 (MD5) Previous issue date: 2016-02 / Capes / A teoria da relatividade geral prevê soluções tipo buraco negro, as quais são caracterizadas pela existência de um horizonte de eventos. Como exemplo, podemos citar a métrica obtida por Bãnados-Teitelboim-Zanelli (BTZ), que é uma solução da gravitação em (2+1)- dimensões, em que se considera uma constante cosmológica negativa. Nos últimos anos, buracos negros não-comutativos têm sido investigados na literatura por muitos autores. Em particular, a métrica BTZ não-comutativa foi obtida considerando-se a equivalência, que existe em três dimensões, entre gravitação e a teoria de Chern-Simons, que e uma teoria quântica de campos topológica em três dimensões, e usando-se o mapeamento de Seiberg-Witter com a solução em (2+1)-dimensões. A presença de divergências na teoria quântica de campos leva a considerar a possibilidade de modificar o princípio da incerteza de Heisemberg, introduzindo uma escala de comprimento fundamental, e esta modificação geram correções nas propriedades termodinâmica de buracos negros. Um dos efeitos associados as soluções tipo buraco negro, independente da dimensão do espaço-tempo, e a emissão térmica (Radiação Hawking), a qual e vista como um processo de tunelamento devido as flutuações do vácuo que acontece na região próxima ao horizonte de eventos. Neste trabalho, com o objetivo de investigar as correções devido a não comutatividade e ao princípio da incerteza generalizado, consideramos a métrica BTZ não-comutativa. Para tanto, usamos o formalismo de tunelamento via método de Hamilton-Jacobi. / The general relativity theory predicts black hole type solutions, which are characterized by the existence of an event horizon. As an example, the metric obtained by Ba~nados- Teitelboim-Zanelli (BTZ), which is a soluton of the gravitation in (2 + 1)-dimensions in what is considered a negative cosmological constant. In recent years, noncommutative black holes have been investigated by many authors in the literature. In particular, the BTZ metric non-commutative was obtained considering the equivalent, which exists in three dimensions, between gravitation and Chern-Simons theory, which is a quantum theory topological elds in three dimensions, and using it mapping Seiberg-Witter with the solution of (2 + 1)-dimensions. The presence of divergences in quantum eld theory leads to consider the possibility of modifying the principle of Heisenberg uncertainty by introducing a fundamental length scale, and this modi cation generate corrections to the thermodynamic properties of black holes. One of the e ects associated with the black hole type solutions, regardless of the space-time dimension is the thermal emission (Hawking radiation), which is seen as a process of tunneling due to vacuum uctuations that happens in the region near the event horizon . In this work, in order to investigate the corrections due to noncommutativity and the principle of widespread uncertainty, we consider the metric BTZ noncommutative. For this, we use tunneling formalism via Hamilton-Jacobi method.
16

Negative frequency waves in optics : control and investigation of their generation and evolution

McLenaghan, Joanna Siân January 2014 (has links)
This thesis is concerned with various methods for the control and investigation of pulse dynamics in a Photonic Crystal Fibre (PCF) and of the radiation driven by a short pulse. In particular the focus is on pulses in the anomalous dispersion region which would form solitons in the absence of higher order effects. Several different types of radiation can be driven by such pulses if they are perturbed by higher order dispersive and non-linear effects - for example Resonant Radiation (RR) and Negative Resonant Radiation (NRR) two dispersive waves which gain energy at the expense of the pulse. The feature of NRR which is of particular importance is that it is the first observed example of a coupling between positive and negative frequencies in optics. This has only been possible due to recent advances in fields such as PCFs, lasers and analogue systems. As with many scientific discoveries, NRR was found by bringing together ideas and techniques from these different fields. Both the pulse and the driven radiation are investigated using a number of different pulse and PCF parameters. These include power, chirp, polarisation and PCF dispersion. These are used to vary the wavelengths at which the driven radiation occurs as well as its generation efficiency. Furthermore the power and chirp are used to vary where in the PCF the driven radiation is generated by controlling where the driving pulse compresses and spectrally expands. This property is used to investigate different stages in the evolution of the pulse and driven radiation as well as to optimise the generation efficiency of the driven radiation.
17

Calculation of Physical Processes at the LHC

Al-Binni, Usama Adnan 01 December 2011 (has links)
With the start of the age of the Large Hadron Collider (LHC) two challenges face theoreticians and computational physicists. The first is about understanding theories beyond the Standard Model and producing verifiable predictions that can be tested against what the LHC and subsequent machines would produce. The second is to improve computational methods so that the new experimental precision is matched by a theoretical one. But this improvement is also crucial for the detection of potential deviations from Standard Model predictions and possibly also finding the elusive Higgs. This work tries to address problems in both areas. In the first part we study the effects of adding tension in considering a black-hole on a brane. Such black-holes are predicted by some models as potential phenomena at the LHC. We calculate the effects of adding tension on observable quantities of black-holes, namely, quasinormal mode frequencies and Hawking radiation, and we show how this improves predictions. In the second part we investigate the computational problem of extending the Britto-Cachazo-Feng-Witten (BCFW) method to 1-loop level. The BCFW has been successfully used in recent years to compute scattering amplitudes at tree-level by suitably complex-shifting external momenta and reducing diagrams to simpler ones. In our investigation we establish that the BCFW can be extended to 1-loop, which means that 1-loop integrands can be treated as trees and can be broken down further into even simpler trees using the BCFW. We explicitly look at the effects of the shift for the lowest three n-point cases, but also demonstrate how the result extends to arbitrary n.
18

The fuzzy horizon

Murugan, Anand January 2007 (has links)
The fuzzball model of a black hole is an attempt to resolve the many paradoxes and puzzles of black hole physics that have revealed themselves over the last century. These badly behaved solutions of general relativity have given physicists one of the few laboratories to test candidate quantum theories of gravity. Though little is known about exactly what lies beyond the event horizon, and what the ultimate fate of matter that falls in to a black hole is, we know a few intriguing and elegant semi-classical results that have kept physicists occupied. Among these are the known black hole entropy and the Hawking radiation process.
19

Entanglement and the black hole information paradox

Flodgren, Nadia January 2017 (has links)
The black hole information paradox arises when quantum mechanical effects are considered in the vicinity of the event horizon of a black hole. In this report we describe the fundamental properties of quantum mechanical systems and black holes that lead to the information paradox, with focus on quantum entanglement. While first presented in 1976, the information paradox is as of yet an unsolved problem. Two of the proposed solutions, black hole complementarity and firewalls, are discussed. / Svarta hålets informationsparadox uppkommer när man tar hänsyn till kvantmekaniska effekter i närheten av händelsehorisonten av ett svart hål. I denna rapport beskrivs de grundläggande egenskaper hos kvantmekaniska system och svarta hål som leder till informationsparadoxen, med fokus på kvantintrassling. Paradoxen, som presenterades 1976 men än idag är ett olöst problem, förklaras sedan. Två av de förslagna lösningarna till paradoxen, svarta hål-komplementaritet och firewalls, diskuteras.
20

Simulation of curved-space quantum field theories with two-component Bose-Einstein condensates: from black-hole physics to cosmology

Berti, Anna 04 April 2024 (has links)
In 1981, Unruh suggested the possibility of simulating the dynamics of quantum fields in curved spacetimes using sound-waves propagating in moving fluids: a supersonic flow would indeed influence the dynamics of sound similarly to what happens to light when it’s dragged by the spacetime geometry in strong gravity environments. This simple yet groundbreaking observation has lead to the beginning of a whole new field of research, nowadays known as Analog Gravity. Due to their superfluid character, intrinsic quantum nature and impressive experimental tunability, Bose-Einstein condensates represent one of the most promising platforms to realize analog spacetimes, including black-hole geometries with horizons and ergoregions, as well as of time-dependent configurations relevant to cosmology. In this Thesis we go beyond the standard single-component BEC and focus on two-component mixtures of atomic condensates, possibly in the presence of a coherent coupling between the two-components: the availability of various branches of elementary excitations with different sound speed and effective mass may in fact lead to advantages in the implementation of interesting geometries and, eventually, to the exploration of a broader spectrum of physical processes. We first consider black-hole related phenomena (Hawking radiation and rotational superradiance) that have already been analysed with single-component systems, generalising the results to mixtures; we then proceed to tackle a problem (the decay from the false vacuum) which instead requires the additional degrees of freedom that only a mixture displays.

Page generated in 0.0981 seconds