• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 119
  • 19
  • 19
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 197
  • 197
  • 67
  • 58
  • 53
  • 38
  • 35
  • 29
  • 24
  • 20
  • 20
  • 19
  • 19
  • 18
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Health risk assessment of the radioactive emissions from the consolidated incineration facility at Savannah river site

Coward, Harriet Michelle 05 1900 (has links)
No description available.
22

The evaluation of waste minimization/waste treatment strategies for a commercial production process of 4-methyl-3-thiosemicarbazide

Bennen, Wilroy January 2002 (has links)
Chemical synthesis is closely related to waste minimization. There is no chemical process that does not produce waste. The methods used by industry to deal with this waste is a major environmental concern. This thesis describes the laboratory scale waste minimization and waste treatment strategies for the commercial production process of 4-methyl-3-thiosemicarbazide (MTSC). The production process of 4-methyl-3-thiosemicarbazide was investigated with the aim of increasing the isolated yield of MTSC and at the same time decrease the amount and toxicity of effluent obtained. During this study, parameters were investigated such as the use of excess DIPEA and the temperature of the reaction. Preliminary studies clearly showed that both factors have a significant influence on the final yield of the product. The next part of the investigation was to optimize the two parameters influencing the isolated yield of the MTSC. For this investigation, a multi factorial design was used to determine the optimum conditions in the MTSC yield response. From the results obtained, it was clear that the excess of DIPEA and the temperature of the reaction both need to be high to obtain high yields. These theoretical results were confirmed by results obtained practically, where yields of up 82 % were obtained, but it became clear that even higher yields could be obtained since chromatographic results showed yeilds as high as 90 %. The mass balance of the MTSC synthesis showed a loss of approximately 30 grams per reaction. This loss may have an influence on the final yield. The effluent obtained during the synthesis of MTSC was investigated and a waste treatment protocol was established to reduce the high COD value of the MTSC effluent. The protocol consists of two steps used for the clean up of the effluent. The first being a cooling step; the effluent was cooled at 0oC to induce precipitation of a solid, consisting mostly of MTSC. The second step is a high pressure wet oxidation of the effluent with oxygen in a high pressure reactor. The remaining compounds in the effluent were oxidized, resulting in another precipitate, consisting mostly of sulphur. After the oxidation the COD value of the effluent was decreased by 98 % to a value of 0.4 %. The MTSC present in the precipitate obtained after cooling could be isolated and purified, to add to the yield of the synthesis. The sulphur obtained during the oxidation could also be isolated and reused, or sold to prevent it from contaminating the environment.
23

Towards environmentally sound management of hazardous wastes in Indonesia an overview of international law and North American practices /

Triyono, Haryanto, January 1990 (has links)
Thesis (LL. M.)--Dalhousie University, 1990. / Includes bibliographical references (leaves 245-260).
24

A comparison of Hong Kong and overseas practice in special waste management

Tang, Kin-man, Raymond., 鄧健民. January 2003 (has links)
published_or_final_version / Environmental Management / Master / Master of Science in Environmental Management
25

A review of stabilization and immobilization technologies for hazardous wastes

冼蘊芝, Sin, Wan-chi, Vivian. January 2001 (has links)
published_or_final_version / Environmental Management / Master / Master of Science in Environmental Management
26

Bench-scale study for the bioremediation of chlorinated ethylenes at Point Mugu Naval Air Weapons Station, Point Mugu California, IRP Site 24

Keeling, Matthew Thomas 23 November 1998 (has links)
Laboratory scale microcosm studies were conducted using site specific groundwater and aquifer solids to assess the feasibility of stimulating indigenous microorganisms in-situ to biologically transform Trichloroethylene (TCE) and its lesser chlorinated daughter products dichloroethylene (DCE) and vinyl chloride (VC). Three different treatments were conducted to determine the best approach for biologically remediating TCE under site specific conditions: anaerobic reductive dechlorination, aerobic cometabolism and sequential anaerobic/aerobic stimulation. Studies were conducted in batch serum bottles containing aquifer solids, groundwater and a gas headspace. Long-term (302 days) TCE anaerobic reductive dechlorination studies compared lactate, benzoate and methanol as potential anaerobic substrates. Site characteristic sulfate concentrations in the microcosms averaged 1,297 mg/L and TCE was added to levels of 2.3 mg/L. Substrates were added at one and a half times the stoichiometric electron equivalent of sulfate. Nutrient addition and bioaugmentation were also studied. Both benzoate and lactate stimulated systems achieved complete sulfate-reduction and prolonged dechlorination of TCE to VC and ethylene. Dechlorination was initiated between 15 to 20 days following lactate utilization and sulfate-reduction in the presence of approximately 300 mg/L sulfate. Benzoate amended microcosms did not initiate dechlorination until 120 to 160 days following the complete removal of available sulfate. After 302 days of incubation lactate and benzoate amended microcosms completely transformed TCE to VC with 7 to 15% converted to ethylene. Re-additions of TCE into both systems resulted in its rapid transformation to VC. The dechlorination of VC to ethylene was very slow and appeared to be dependent on VC concentration. Hydrogen addition at 10����� and 10������ atmospheres had no effect on the transformation of VC. Rapid methanol utilization resulted in its nearly stoichiometric conversion to methane and carbon dioxide without significant sulfate-reduction or dechlorination occurring. Nutrient addition slightly enhanced dehalogenation with lactate but inhibited it with benzoate. Bioaugmentation with a TCE dechlorinating culture from a previous benzoate amended Point Mugu microcosm effectively decreased lag-times and increased overall dechlorination. Aerobic cometabolism studies evaluated methane, phenol and propane as cometabolic growth substrates. Methane and phenol amended microcosms were able to remove only 50 to 60% of the added TCE after four stimulations, while propane utilizers were unable to cometabolize any TCE. Primary substrate utilization lag-times of 4 to 5 days, 0 to 0.5 days and 40 to 45 days were observed for methane, phenol and propane, respectively. Cometabolism of VC was possible in the presence of methane. Complete removal of 210 ��g/L VC was achieved after 2 stimulations with methane under strictly aerobic conditions. Methane utilization and VC oxidation required nitrate addition, indicating that the system was nitrate limited. A sequential anaerobic/aerobic microcosm study failed to achieve methane utilization and VC transformation likely due to oxygen being utilized to re-oxidize reduced sulfate in the system. / Graduation date: 1999
27

Development of chemostats and use of redox indicators for studying redox transformations in biogeochemical matrices

Lemmon, Teresa L. 26 April 1995 (has links)
Graduation date: 1995
28

In vitro anaerobic trinitrotoluene (TNT) degradation with rumen fluid and an isolate, G.8

Lee, Taejin 30 November 1994 (has links)
Graduation date: 1995
29

Photodechlorination of pentachlorobenzene in organo-clay

Yoo, Hye-Dong 19 October 1994 (has links)
Graduation date: 1995
30

The chemchar gasification process : theory, experiment, and design developments /

Medcalf, Bradley D., January 1998 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 1998. / Typescript. Vita. Includes bibliographical references. Also available on the Internet.

Page generated in 0.0347 seconds