• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The assessment of body copper status and its application to the study of atherosclerosis

Kinsman, George David January 1991 (has links)
No description available.
2

Early determinants of blood pressure and related disease

Bull, Adrian Richard January 1992 (has links)
No description available.
3

The endothelial glycocalyx : recovery, stability and role in electric field-directed cell migration in vitro

Li, Weiqi January 2014 (has links)
Cardiovascular disease is the leading cause of unnatural death worldwide. Damage to the endothelial glycocalyx impairs endothelial functions and thereafter leads to the development of cardiovascular diseases. Despite this, many issues remain to be explored in our understanding of the metabolism and vasculoprotective potential of the glycocalyx. This study focuses on the recovery and structural stability of the glycocalyx, and its role in electric field-directed cell migration in vitro. The integrity of the glycocalyx is compromised following trypsin treatment during cell passages. Results from our study show that cell seeding density affects the recovery speed of the glycocalyx in the first 48h. Higher cell density results in more rapid recovery of the glycocalyx. Regardless of the initial cell seeding density, a well-developed glycocalyx layer is observed when cell confluence is reached. Micropatterning is used to study effects of the cell shape on the recovery of the glycocalyx. Elliptical patterns have been used to conform endothelial cells to torpedo shapes, mimicking their morphology under a shear flow. More rapid development of the glycocalyx on elliptical cells is observed than that on circular shaped cells during the early stage of recovery. Effects of the actin cytoskeleton on the stability of the glycocalyx are investigated, following our interest in shedding of the glycocalyx in abnormal vascular microenvironment. Rapid depolymerisation of the actin cytoskeleton leads to cell retraction within 10mins, with the glycocalyx preserved on the cell surface. This is also seen during 24h persistent actin disruption under static conditions. However, when endothelial cells are subjected to 24h steady laminar shear stress, the glycocalyx is seen to shift to the downstream of the cell surface in the control group, and with actin depolymerisation, significant shedding of the glycocalyx from the luminal surface of the cell is observed. This happens together with the loss of focal adhesions on the basal membrane. Using a custom designed electric field (EF) chamber, I demonstrate that the cell migration speed increases by 30~40% following 5h of EF exposure. Cells also show preferred movement towards the anode. However, both are abolished after the enzymatic removal of the glycocalyx, indicating that the speedup and the directional cell migration in applied EF require the presence of the glycocalyx. Even distribution of the glycocalyx on the cell surface at the end of the EF stimulation suggests that EF-directed cell migration is not related to the polarization of the glycocalyx on the cell membrane. All these findings provide a better understanding of the glycocalyx, which will help to develop new strategies for protection of the glycocalyx, restoration of endothelial functions and finally prevention of cardiovascular diseases.
4

Genomics of lipid metabolism : identification of genetic determinants of lipid metabolites and the effect of perturbations of lipid levels on coronary heart disease risk factors

Harshfield, Eric Leigh January 2018 (has links)
Background: Coronary heart disease (CHD) is one of the leading causes of death worldwide, and global mortality rates are expected to continue to rise over the coming decades. In Pakistan in particular, chronic diseases are responsible for 50% of the total disease burden. Circulating lipids are strongly and linearly associated with risk of CHD; however, despite considerable efforts to demonstrate causality, available evidence is conflicting and insufficient. Study of the underlying metabolic pathways implicated in the association between lipids and CHD would help to disentangle and elucidate these complex relationships. Objectives: The primary objectives of this dissertation were to (1) identify the genetic determinants of lipid metabolites and (2) advance understanding of the effect of perturbations in lipid metabolite levels on CHD and its risk factors. Methods: Direct infusion high-resolution mass spectrometry was performed on 5662 participants from the Pakistan Risk of Myocardial Infarction Study to obtain signals for 444 known lipid metabolites. Correlations and associations of the lipids with smoking, physical activity, circulating biomarkers, and other CHD risk factors were assessed. Genome-wide analyses were conducted to analyse the association of each lipid with over 6.7 million imputed single nucleotide polymorphisms. Functional annotation and Gaussian Graphical Modelling were used to link the variants associated with each lipid to the most likely mediating gene, discern the underlying metabolic pathways, and provide a visual representation of the genetic determinants of human metabolism. Mendelian randomisation was also implemented to examine the causal effect of lipids on risk of CHD. Results: The lipids were highly correlated with each other and with levels of major circulating lipids, and they exhibited significant associations with several CHD risk factors. There were 254 lipids that had significant associations with one or more genetic variants and 355 associations between lipids and variants, with a total of 89 sentinel variants from 23 independent loci. The analyses described in this dissertation resulted in the discovery of four novel loci, identified novel relationships between genetic variants and lipids, and revealed new biological insights into lipid metabolism. Conclusion: Analyses of lipid metabolites in large epidemiological studies can contribute to enhanced understanding of mechanisms for CHD development and identification of novel causal pathways and new therapeutic targets.

Page generated in 0.0859 seconds