Spelling suggestions: "subject:"heat -- atransmission."" "subject:"heat -- cotransmission.""
581 |
Post critical heat flux heat transfer in a vertical tube including spacer grid effectsCluss, Edward Max January 1978 (has links)
Thesis. 1978. M.S.--Massachusetts Institute of Technology. Dept. of Mechanical Engineering. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING. / Includes bibliographical references. / by Edward M. Cluss, Jr. / M.S.
|
582 |
Effect of control parameters on energy consumption of a room heating systemDesai, Nainan Vijay January 2011 (has links)
Photocopy of typescript. / Digitized by Kansas Correctional Industries
|
583 |
A mathematical model for calculating transient heating or cooling loads from lightingGreen, Daniel Joseph January 2011 (has links)
Digitized by Kansas Correctional Industries
|
584 |
Analytical techniques for determining temperatures, thermal strains, and residual stressesPapazoglou, V. J. (Vassilios John) January 1981 (has links)
Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Ocean Engineering, 1981. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING. / Includes bibliographical references. / by Vassilios John Papazoglou. / Ph.D.
|
585 |
The effects of secondary flows on the heat transfer to turbine nozzle endwall and rotor shroud.Nebo, Anthony Chibuzo January 1979 (has links)
Thesis (Sc.D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 1979. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING. / Vita. / Includes bibliographical references. / Sc.D.
|
586 |
A study of heat transfer and fluid flow in the electroslag refining processChoudhary, Manoj Kumar January 1980 (has links)
Thesis (Sc.D.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 1980. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND SCIENCE. / Vita. / Includes bibliographical references. / by Manoj Kumar Choudhary. / Sc.D.
|
587 |
Aerodynamic performance and heat transfer characteristics of high pressure ratio transonic turbines.Demuren, Harold Olusegun January 1976 (has links)
Thesis. 1976. Sc.D.--Massachusetts Institute of Technology. Dept. of Aeronautics and Astronautics. / Microfiche copy available in Archives and Barker. / Vita. / Includes bibliographical references. / Sc.D.
|
588 |
Mass transfer modeling of DRI particle-slag heat transfer in the electric furnace.Wright, Randall Stephen January 1979 (has links)
Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 1979. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND SCIENCE. / Includes bibliographical references. / M.S.
|
589 |
Experimental investigation of structure function and flow circulatin of the velocity field in turbulent thermal convection. / 湍流熱對流中速度場結構函數和流動循環的實驗研究 / Experimental investigation of structure function and flow circulatin of the velocity field in turbulent thermal convection. / Tuan liu re dui liu zhong su du chang jie gou han shu he liu dong xun huan de shi yan yan jiuJanuary 2011 (has links)
Qi, Pengfei = 湍流熱對流中速度場結構函數和流動循環的實驗研究 / 齊鵬飛. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2011. / Includes bibliographical references (p. 65-69). / Abstracts in English and Chinese. / Qi, Pengfei = Tuan liu re dui liu zhong su du chang jie gou han shu he liu dong xun huan de shi yan yan jiu / Qi Pengfei. / Abstract --- p.i / 摘要 --- p.ii / Acknowledgements --- p.iii / Contents --- p.iv / List of Figures --- p.vi / List of Tables --- p.X / Chapter Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- What is turbulence? --- p.1 / Chapter 1.2 --- Why study turbulence and experimentally? --- p.2 / Chapter 1.3 --- Turbulent Rayleigh-Benard convection --- p.4 / Chapter 1.4 --- Basic equations and characteristic parameters --- p.S / Chapter 1.4.1 --- Continuity equation --- p.5 / Chapter 1.4.2 --- Momentum equation (Navier-Stokes equation) --- p.5 / Chapter 1.4.3 --- Energy equation --- p.7 / Chapter 1.4.4 --- Averaged equations --- p.9 / Chapter 1.4.5 --- Characteristic parameters --- p.10 / Chapter 1.5 --- Statistical properties in small-scale turbulence --- p.13 / Chapter 1.5.1 --- Phenomenological description and Kolmogorov hypotheses --- p.14 / Chapter 1.5.2 --- Local structure of the velocity fluctuations --- p.15 / Chapter 1.6 --- Large-scale circulation --- p.17 / Chapter 1.7 --- Motivation and Organizations of this thesis --- p.19 / Chapter 1.7.1 --- B059 scaling --- p.19 / Chapter 1.7.2 --- Large-scale circulation --- p.19 / Chapter 1.7.3 --- Organization of the thesis --- p.20 / Chapter 1.8 --- Some words to my experiment and further expectation --- p.21 / Chapter Chapter 2 --- Experimental apparatus and techniques --- p.27 / Chapter 2.1 --- Rectangle cell --- p.27 / Chapter 2.2 --- The power supply and cooler --- p.28 / Chapter 2.3 --- Thermistor and multimeter --- p.29 / Chapter 2.4 --- Particle image velocimetry (PIV) technology --- p.30 / Chapter 2.4.1 --- Seeding particles --- p.31 / Chapter 2.4.2 --- Light source and light-sheet optics --- p.33 / Chapter 2.4.3 --- Imaging system --- p.34 / Chapter 2.4.4 --- Control system --- p.34 / Chapter 2.4.5 --- Analysis method --- p.35 / Chapter Chapter 3 --- Small-scale properties in rectangular cell --- p.37 / Chapter 3.1 --- Introduction --- p.37 / Chapter 3.2 --- Experimental condition --- p.37 / Chapter 3.3 --- Homogeneity --- p.39 / Chapter 3.4 --- Isotropy --- p.40 / Chapter 3.5 --- Scaling of structure function --- p.42 / Chapter Chapter 4 --- Large-scale circulation --- p.51 / Chapter 4.1 --- Introduction --- p.51 / Chapter 4.2 --- Experimental condition and limitation --- p.54 / Chapter 4.3 --- Statistical properties of large-scale circulation period --- p.56 / Chapter 4.4 --- Scaling of the Reynolds number --- p.59 / Chapter 4.5 --- Oscillation period --- p.60 / Chapter Chapter 5 --- Conclusion --- p.63 / Chapter 5.1 --- Small-scale properties in rectangular cell --- p.63 / Chapter 5.2 --- Large-scale circulation --- p.63 / Reference --- p.65
|
590 |
Effectiveness of Additive Correction Multigrid in numerical heat transfer analysis when implemented on an Intel IPSC2Padgett, James D. 01 January 1992 (has links)
The effectiveness of the Additive Correction Multigrid (ACM) algorithm, a line-byline Tri-diagonal Matrix Algorithm (TDMA), and simple Gauss-Seidel (GS) iteration in numerical heat transfer analysis is investigated on a conventional single processor computer and on a distributed memory parallel computer. The performance of these methods is studied by solving a two-dimensional, steady heat conduction problem. The execution time of ACM on a single processor is proportional to the number of unknowns to the 1.5 power. This is in contrast to the execution time of the TDMA for which the execution time is proportional to the number of unknowns to the 2.0 power. The GS , TDMA and ACM algorithms are adapted to a model IPSC2 Intel hypercube which has a 32 processing nodes each with 8 MBytes oflocal memory. Because GS is a local method, it has almost perfect speed up, but it also converges more slowly than TDMA, The TDMA, on the other hand, is affected by domain decomposition to a greater extent than GS. As the number of processors used to solve the problem is increased, the execution times for GS and TDMA are essentially equal. Solving the model problem with 32 processors on a 192x192 grid resulted in parallel efficiencies of 95%, 80% and 78% for the GS, TDMA, and ACM algorithms, respectively. Though the parallel efficiency of ACM was the lowest of the three, the parallel ACM algorithm required an order of magnitude less time to solve the model than either parallel GS or parallel TDMA without multigrid.
|
Page generated in 0.08 seconds