• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 47
  • 9
  • 8
  • 7
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • Tagged with
  • 109
  • 109
  • 22
  • 22
  • 16
  • 15
  • 11
  • 11
  • 9
  • 9
  • 8
  • 8
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Interaction of groundwater flow systems and thermal regimes in mountainous terrain : a numerical study

Forster, Craig Burton January 1987 (has links)
It is widely recognized that topographically-driven groundwater flow can perturb conductive thermal regimes. High-relief topography amplifies the impact of factors controlling groundwater flow and advective heat transfer. A finite element method is developed to model the influence of geology, climate, surface topography and regional heat flux on steady groundwater flow and heat transfer. Because fluid viscosity (hence fluid flux) depends upon temperature, groundwater flow is influenced by the regional heat flux. As a consequence, isothermal approaches to modeling deep groundwater flow in mountains may be inappropriate. Using a free-surface approach, the water table is represented as an internal characteristic of the groundwater flow system, rather than the upper boundary for fluid flow. Thick unsaturated zones are expected in high-permeability terrain (greater than 10⁻¹⁵ m²) with arid climate, or where groundwater recharge is restricted by extensive alpine glaciers. Only vertical fluid flow is assumed to occur in the unsaturated zone, therefore, heat transfer above the water table is represented by one-dimensional advection and two-dimensional conduction. Simulation results indicate that water table elevations are highly sensitive to changes in the controlling factors, but have little impact on the thermal regime. Conductive thermal regimes are predicted in low-permeability terrain (less than 10⁻¹⁸ m²) or in high-permeability terrain with arid climate (recharge rates less than 10⁻¹¹ m/sec). Strong advective heat transfer masks the regional heat flux when permeability exceeds 10⁻¹⁶ m² in terrain with relief of 2 km over a horizontal distance of 6 km. Less than one percent of typical mean annual precipitation is transmitted through deep groundwater flow systems under these conditions. Asymmetric surface topography complicates efforts to interpret chemical and thermal data collected near the valley floor. Fracture zones outcropping at the valley floor can capture a large percentage of groundwater flowing through the system and a significant percentage of the basal heat flux. Maximum spring temperatures are indicated when bulk permeability is between 10⁻¹⁷ m² and 10⁻¹⁵ m². Outside this range, spring temperatures approach ambient air temperature. Topographically driven groundwater flow can distort and obliterate free-convection cells that might otherwise develop within a mountain massif. / Science, Faculty of / Earth, Ocean and Atmospheric Sciences, Department of / Graduate
12

Superfluid turbulence

Melotte, David John January 1999 (has links)
No description available.
13

An investigation of radial heat transfer in packed beds

Al-Meshragi, Mohamed January 1989 (has links)
No description available.
14

Investigating the impact of variations in particle size on heat flow from chaparral fires into soils using a laboratory based wildfire simulator

Karch, Adam Joseph 01 December 2009 (has links)
It has been well established that under certain circumstances wildfire is capable of producing water repellent or hydrophobic soils. Hydrophobic soils can dramatically alter runoff and erosion processes and as such have been the subject of considerable research activity. Wildfires in chaparral vegetation are recognized as being particularly susceptible to hydrophobic soil development. A comparison of chaparral fire soil heat profiles from DeBano (1989) and Weirich (unpublished) indicates that under higher fire intensity situations in chaparral a different soil heating mechanism other than just conduction heating may be at work. In contrast to the slow moving low temperature increases expected in conduction heating a much faster heat pulse resulting in more rapid temperature rises and higher temperatures at depth can also occur in chaparral wildland fires. This suggests that a better understanding of the heat transfer processes that occur at extreme fire intensities is both important and is needed. The specific aim of this study was to observe heat flow under a variety of particle sizes using a laboratory based wildfire simulator operating at intensities and durations similar to those experienced in chaparral wildfires. The wildfire simulator system consisted of a propane burner array, an array of thermocouples to measure temperatures at varying locations and depths, and a data logging system to record the results of the heating experiments. Using the simulator homogenous sand, silt, clay, and heterogeneous clay loam were subjected to 600ºC, 900ºC, and 1200ºC peak intensities with two different heating durations or treatments (H1 and H2). The heating levels and durations used were based on data from field based chaparral fire experimental temperature data previously collected by Weirich (unpublished). The system design allowed the user to control the intensity and duration of the heat treatments and the thermocouple sensor arrays measured temperatures at the flame to a soil depth of 15cm. The apparatus and experimental treatments allowed for the investigation of peak heat intensity, heat duration, slope, and most importantly particle size on heat transfer processes. The higher soil temperatures at depth, shorter times to peak temperatures at depth, and observed temperature spiking seen during some of the simulator experimental runs (specifically with respect to larger particle sizes such as sand) call into question the view that slow moving conduction may not be the only soil heat transfer process at work in high fire intensity situations such as those seen in chaparral wildfires and in particular chaparral wildfire underlain by larger particle sizes fractions such as sand.
15

Joint Inversion of Production and Temperature Data Illuminates Vertical Permeability Distribution in Deep Reservoirs

Zhang, Zhishuai 2012 August 1900 (has links)
Characterization of connectivity in compartmentalized deepwater Gulf of Mexico (GoM) reservoirs is an outstanding challenge of the industry that can significantly impact the development planning and recovery from these assets. In these deep formations, temperature gradient can be quite significant and temperature data can provide valuable information about field connectivity, vertical fluid displacement, and permeability distribution in the vertical direction. In this paper, we examine the importance of temperature data by integrating production and temperature data jointly and individually and conclude that including the temperature data in history matching of deep GoM reservoirs can increase the resolution of reservoir permeability distribution map in the vertical direction. To illustrate the importance of temperature measurements, we use a coupled heat and fluid flow transport model to predict the heat and fluid transport in the reservoir. Using this model we ran a series of data integration studies including: 1) integration of production data alone, 2) integration of temperature data alone, and 3) joint integration of production and temperature data. For data integration, we applied four algorithms: Maximum A-Posteriori (MAP), Randomized Maximum Likelihood (RML), Sparsity Regularized Reconstruction and Sparsity Regularized RML methods. The RML and Sparsity Regularized RML approaches were used because they allow for uncertainty quantification and estimation of reservoir heterogeneity at a higher resolution. We also investigated the sensitivity of temperature and production data to the distribution of permeability, which showed that while production data primarily resolved the distribution of permeability in the horizontal direction, the temperature data did not display much sensitivity to permeability in the horizontal extent of the reservoir. The results of these experiments were compelling in that they clearly illuminated the role of temperature data in enhancing the resolution of reservoir permeability maps with depth. We present several experiments that clearly illustrate and support the conclusions of this study.
16

REGULARITY AND UNIQUENESS OF SOME GEOMETRIC HEAT FLOWS AND IT'S APPLICATIONS

Huang, Tao 01 January 2013 (has links)
This manuscript demonstrates the regularity and uniqueness of some geometric heat flows with critical nonlinearity. First, under the assumption of smallness of renormalized energy, several issues of the regularity and uniqueness of heat flow of harmonic maps into a unit sphere or a compact Riemannian homogeneous manifold without boundary are established. For a class of heat flow of harmonic maps to any compact Riemannian manifold without boundary, satisfying the Serrin's condition, the regularity and uniqueness is also established. As an application, the hydrodynamic flow of nematic liquid crystals in Serrin's class is proved to be regular and unique. The natural extension of all the results to the heat flow of biharmonic maps is also presented in this manuscript.
17

Development and evaluation of a non-invasive core temperature measurement system

Cadic, Emily Kathleen 26 July 2012 (has links)
Core body temperature is an important physiological parameter used to identify whether a patient displays a normal, hypothermic, or hyperthermic state. It is routinely monitored during cardiac surgeries and general anesthesia. Currently, the most effective methods for measuring core body temperature are also the most invasive. While select devices have been designed to enable surface recording of internal temperature, none have been implemented in U.S.-based hospitals. The objective of this study was to create a noninvasive core temperature sensor and evaluate its potential of becoming a widely used clinical tool. In tissue phantom and human-based experiments, the prototype performed effectively and posed no safety risk. Provided the prototype can be successfully translated into a more streamlined medical device, it stands to become a staple in operating rooms around the nation. / text
18

Fluid description of relativistic, magnetized plasmas with anisotropy and heat flow : model construction and applications

TenBarge, Jason Michael 23 March 2011 (has links)
Many astrophysical plasmas and some laboratory plasmas are relativistic: either the thermal speed or the local bulk flow in some frame approaches the speed of light. Often, such plasmas are magnetized in the sense that the Larmor radius is smaller than any gradient scale length of interest. Conventionally, relativistic MHD is employed to treat relativistic, magnetized plasmas; however, MHD requires the collision time to be shorter than any other time scale in the system. Thus, MHD employs the thermodynamic equilibrium form of the stress tensor, neglecting pressure anisotropy and heat flow parallel to the magnetic field. We re-examine the closure question and find a more complete theory, which yields a more physical and self-consistent closure. Beginning with exact moments of the kinetic equation, we derive a closed set of Lorentz-covariant fluid equations for a magnetized plasma allowing for pressure and heat flow anisotropy. Basic predictions of the model, including its thermodynamics and the dispersion relation's dependence upon relativistic temperature, are examined. Further, the model is applied to two extant astrophysical problems. / text
19

An alternate approach to the measurement of soil surface heat flux

Merrill, Bruce Rex January 1981 (has links)
No description available.
20

Turbulent heat fluxes in a forest.

McBean, G. A. January 1966 (has links)
A fast response vertical anemometer and wet and dry bulb thermocouples were used to measure the turbulence within a forest canopy. Five trials of ten minutes duration were run in each of a sixty-five foot high pine forest and a fifteen foot high lodgepole pine forest. [...]

Page generated in 0.051 seconds